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A Class of Parametrically Excited Calcium Oscillation Detectors
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ABSTRACT Intracellular Ca2+ oscillations are often a response to external signals such as hormones. Changes in the external
signal can alter the frequency, amplitude, or form of the oscillations suggesting that information is encoded in the pattern of Ca2+
oscillations. How might a cell decode this signal? We show that an excitable system whose kinetic parameters are modulated
by the Ca>2 concentration can function as a Ca2+ oscillation detector. Such systems have the following properties: (1) They are
more sensitive to an oscillatory than to a steady Ca2+ signal. (2) Their response is largely independent of the signal amplitude.
(3) They can extract information from a noisy signal. (4) Unlike other frequency sensitive detectors, they have a flat frequency
response. These properties make a Ca2+-sensitive excitable system nearly ideal for detecting and decoding Ca2+ oscillations.
We suggest that Ca2+ oscillations, in concert with these detectors, can act as cellular timekeepers to coordinate related bio-
chemical reactions and enhance their overall efficiency.

INTRODUCTION
Intracellular Ca2" oscillations are often a response to external
signals in cells as diverse as fish eggs and human neurons.
Changes in the external signal are often reflected in changes
in the frequency, amplitude, or form of these oscillations,
suggesting that the information carried by the external signal
may be encoded in the pattern of Ca2" oscillations. In hepa-
tocytes, for example, changes in the angiotensin concentra-
tion modulate the Ca2" oscillation frequency, while the am-
plitude, baseline value, and waveform remain constant. This
observation by Woods et al. (1986) led to their proposition
that hepatocytes use frequency modulation (FM) to encode
information, as in FM radio broadcasting.
What a cell does with this information depends on the

response of the receiver to the Ca" oscillations. In this paper
we describe a class of biochemical systems that can act as
receivers and decoders of the Ca" oscillation-encoded in-
formation. These biochemical systems, called parametric
Ca" oscillation detectors, or PCODs, become entrained to
the Ca2" oscillations and produce large amplitude oscilla-
tions. These large amplitude oscillations, the output of the
receiver, may serve as a starting point of other cellular chemi-
cal reactions. We use the term parametric because the modu-
lation of some kinetic parameter of the biochemical system
by Ca2" is central to the activation of these systems.
The essential dynamic property of PCODs is excitability.

Excitable is used in the same sense as in nerve axons; that
is, the system is stable to small disturbances but "fires" when
the disturbance exceeds some threshold. Excitable behavior
is not uncommon in biological systems, and many oscillating
systems can, by a change in parameter values, be made ex-
citable. Because the known cellular oscillators number over
a hundred (Rapp, 1979) the class of PCODs may be quite
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large. Thus PCODs are not part of a novel class of dynamical
systems but rather part of a large and familiar one. What is
novel is our interpretation of the response of excitable sys-
tems to periodic parameter modulation.
We will show that PCODs have the following properties:

(1) PCODs are more sensitive to an oscillatory Ca2" signal
than to a steady elevated Ca" concentration. (2) The re-
sponse of PCODs is largely independent of the amplitude of
the Ca>2 oscillations. (3) PCODs can extract information
from a very noisy signal. (4) Unlike other frequency-
sensitive detectors, PCODs have an almost flat frequency
response. We show how these properties allow a PCOD to
operate as a receiver within the constraints imposed by using
Ca>2 as a signaling molecule.
We suggest that Ca>2 oscillations, in concert with PCODs,

can act as cellular timekeepers to temporally coordinate re-
lated biochemical reactions and, perhaps, enhance their ef-
ficiency and throughput.

A MODEL PARAMETRIC Ca2+ OSCILLATION
DETECTOR
A mechanical energy analog
The operation of a PCOD and most of its important properties
can be understood using a mechanical energy analog of an
excitable system shown in Fig. 1. Fig. 1 A shows the ball at
rest at the local energy minimum x = x0. Distorting the en-
ergy profile (Fig. 1 B) causes the ball, starting from x0, to roll
down to the new energy minimum. In this case the distortion
is small enough that the ball makes only a small local ad-
justment to the new energy minimum. If, however, the en-
ergy profile distortion is large enough (Fig. 1 C) the ball finds
itselfbeyond the local energy maximum (the threshold value)
and rolls down the big energy hill to land far from its starting
position. This is analogous to the threshold phenomenon in
nerve axons.
What underlies the distortion of the energy profile? The

key assumption in our model is that changes in the Ca>
concentration modulate the velocity field (described below),
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phosphate (cAMP) oscillations in the slime mold Dictyos-
telium discoideum. Segel's (1989) simplification of the origi-
nal model provides a convenient system to demonstrate the
properties of PCODs. The simplified model has two differ-
ential equations, so phase plane methods can be used to ana-
lyze and explain how PCODs operate; numerical simulations
show that the simplified model yields the same conclusions
as the original. Segel's equations are

cf = Aa, 1) = 1 - oo(a, (),
( = g(a, (3) = qu4)(a, () - kp,

where a and ( are the intracellular concentrations of adeno-
sine triphosphate (ATP) and cAMP, respectively. Segel's
simplification comes from eliminating the differential equa-
tion for the extracellular cAMP ('y), approximating it as an
algebraic function of (3, 'y((3) = kt(/(hk).

oa is the ratio of the maximum cAMP production rate to the
substrate input rate, k, is the decay rate of intracellular cAMP,
and k is the ratio of the decay rate of extracellular cAMP to
the maximal input rate of ATP. h is the ratio of extracellular
volume to total intracellular volume, and q = Ks/KP, where
Ks is the Michaelis constant for adenylyl cyclase and Kp is
the dissociation constant for extracellular cAMP. 4 describes
the conversion of ATP to cAMP and is given by

)(a (3) - +a(1 + a)(1 + y(())2L + (1 + a)21+y()2

FIGURE 1 Energy analog for the parametric Ca2" oscillation detector
(PCOD). Ca2" oscillations modulate the velocity field of the PCOD, which
is analogous to the energy profile in a mechanical system. (A) The ball is
at the local energy minimum at x = x0. (B) A small change in k distorts the
energy profile, moving the energy minimum to a new location, and the ball
moves only a little to adjust to the new energy minimum. (C) A sufficiently
large change in k distorts the energy profile enough so that the ball no longer
is attracted to the new local energy minimum; instead it rolls down the large
energy well to land far from its starting point.

which is the analog of the energy profile. So suppose that the
Ca2" oscillations cause the energy profile to alternate be-
tween that in (Fig. 1 A) and (Fig. 1 C). If after falling the ball
is repeatedly returned to the little energy well, then the ball
will periodically drop from a great height. Thus small pe-
riodic changes in the energy profile can produce large
periodic changes in the height of the ball.

A model PCOD
Many oscillatory systems can become excitable by a change
in parameter values. One such system is Goldbeter and
Segel's (1977) model for cyclic adenosine 3',5'-mono-

where L is the allosteric constant.
Ca2" activates some classes of adenylyl cyclase (type I and

III; Choi et al., 1992; Wu et al., 1993) and inhibit others such
as those found in cardiac myocytes (Yu et al., 1993; Colvin
et al., 1991) and in D. discoideum (Monk and Othmer, 1989).
We therefore assume that changes in the Ca21 concentration
alter the value of q while leaving the other parameters un-
changed. The properties of PCODs presented below are not
unique to the assumption that q is Ca2' dependent. We got
similar results, not shown here, by assuming that any one of
the other parameters k, o-, h, kt, or L, is modulated by Ca2 .

The basic ideas illustrated in the mechanical energy analog
translate naturally to the dynamical system given by Eqs. 1
and 2. The appropriate setting for this translation is the a-(3

plane, or phase plane (Segel, 1989). Analogous to the ball's
coordinate x is the state or phase of the PCOD (a(t), (t)).
In the mechanical energy analog the energy profile or po-
tential energy gradient determines the motion of the ball.
Here, the velocity field (a, (3) = (fta, (3; q), g(a, (; q))
determines the motion of the phase point in the phase plane.
The movement of the phase point is like that of a ball moving
on a complex landscape of hills, valleys, cols, and depres-
sions. The key assumption in our model is that changes in
Ca2' alter the velocity landscape through changes in the pa-
rameter q. In effect, changes in Ca2+ move the location of the
hills and valleys, flattening some, raising others.

For a system to function as a PCOD it suffices that it
possess three dynamic properties: (P1) existence of a unique
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stable steady state; (P2) global boundedness; and (P3) thresh-
old behavior, that is, large changes in (a, 3) result from
arbitrarily small deviations beyond a certain region of at-
traction. Properties (Pl) and (P2) ensure that the solution
returns to the steady state (SS). Collectively, we call these
three properties excitability.

Response of the PCOD to disturbances
To understand how the cAMP system responds to periodic
q modulation we begin by studying its response to a special
kind of perturbation. In the phase plane, shown in Fig. 2, the
vertical (&) and horizontal (13) velocity components of the
phase point anywhere in the plane are given by Eqs. 1 and
2, respectively. Of special importance are the loci of points
where & = 0 and 13 = 0. These are the a- and f3-nullclines,
shown as the solid curves in Fig. 2. ,B is positive for points
above the ,3-nullcline, so the trajectory moves rightward;
conversely, below the 13-nullcline, 13 is negative, and the tra-
jectory moves leftward. Similarly, for points above (below)
the a-nullcline, & is negative (positive) so the trajectory
moves downward (upward). Thus trajectories begin to re-
verse their direction on the nullclines, and any solution tra-
jectory (a(t), 13(t)), for example the one shown by the dashed
loop, crosses the a-nullcline (P-nullcline) horizontally (ver-
tically) because at their intersection a = 0 (1 = 0). Thus the
nullclines mark the horizontal and vertical limits of the so-
lution. This system has a unique SS found at the intersection
of the nullclines.

Property (P1), stability of the unique SS, is satisfied when
the a-nullcline intersects the ascending part of the
,B-nullcline near the local maximum. Linear stability analysis
(Segel, 1989) shows that the SS is a stable focus. Thus after
a small perturbation the system returns to the SS through a
series of damped oscillations as shown in Fig. 3 A, and the
trajectory is shown as the small dashed-dotted loop in Fig.
2. A sufficiently large perturbation, however, causes the sys-
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FIGURE 3 Response to subthreshold (A) and suprathreshold (B) pertur-
bations. C is a caricature of the nullclines for two values of q. The
3-nullclines have an n shape, shown dotted for q = 100 and solid for q =
105. Only a single a-nullcline (dotted-dashed) is needed because this
nullcline is independent of q. The steady states (points A and C) lie at the
intersection of the a- and 3-nullclines. Point B on the a-nullcline is level
with the local maximum of the (3-nullcline for q = 105; any perturbation
from A along the a-nullcline that is below B will not generate a large spike.
a is negative above the a-nullcline and positive above it. 3 is positive above
the 13-nullcline and negative below it.
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FIGURE 2 The phase plane for Eqs. 1 and 2. The nullclines are shown
by the solid curves. The (3-nullcline has a characteristic n-shape common
to many excitable systems. The small loop (dotted-dashed) is the solution
trajectory for a subthreshold perturbation; the large loop (dashed) is the
trajectory for a suprathreshold perturbation. The parameters used were
q = 105, vr = 30, k, = 4, h = 10, L = 106, and k = 10. These parameter
values, except for q, are used throughout the paper.

tem to "fire," generating a large spike seen in Fig. 3 B;
the corresponding trajectory is shown as the dashed curve
in Fig. 2.
The origin of these qualitatively distinct responses to per-

turbations can be understood by using the phase plane sche-
matic in Fig. 3 C. These curves are topologically accurate
representations of the nullclines for q = 100 (dotted curve)
and q = 105 (solid curve). We use these schematic nullclines
because the curvatures of the actual ,B-nullclines are too
subtle near the SS to clearly illustrate the dynamics in this re-
gion. Only a single a-nullcline is needed because this
nullcline is independent of q.
The ,3-nullcline has a characteristic n shape that is com-

mon to many excitable systems such as FitzHugh's BVP
model for axons (FitzHugh, 1961). The importance of the
n-shaped nullcline becomes evident when we make sub-
threshold or suprathreshold perturbations to the SS. Let q be

l 5 - --
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equal to 105 and displace the state from point A (the SS)
along the a-nullcline toward C to a location below point B
that is level with the local maximum of the 13-nullcline. The
reason for displacing the state along the a-nullcline instead
of along an arbitrary direction is to prepare for the next sec-
tion where q will be modulated. In that case the initial point
will lie along the a-nullcline at a position determined by the
instantaneous value of q(t). Starting from the initial displace-
ment the state will follow a trajectory that moves downward
and toward the right (because ,B is positive and a negative)
until, very shortly, it intersects the f-nullcline to the left of
the local maximum. At the ,B-nullcline the rightward move-
ment is arrested and the trajectory begins to turn back to the
left. The net result is a small damped oscillation shown as the
dashed-dotted curve in Fig. 2.
Now consider a suprathreshold displacement from A to C,

which is the SS for q = 100. The state follows a trajectory
(labeled CC') leading downward and to the right as before.
But because the state starts sufficiently high, it clears the
local maximum of the ,B-nullcline and shoots off to the right.
The rightward movement is eventually bounded by the as-
cending part of the P3-nullcline. This perturbation generates
the large spike in Fig. 3 B whose trajectory is shown as the
dashed curve in Fig. 2.

It is neither easy nor necessary to determine analytically
the precise perturbation magnitude needed to reach the
threshold for firing. Nevertheless, it is useful to note that
point B marks the lower bound (but not the greatest lower
bound since the trajectory has a downward component) for
suprathreshold perturbations along the a-nullcline. As the
parameters change and bring the intersection of the a- and
,B-nullclines (that is, the SS) closer to the the local maximum,
the threshold for firing becomes smaller. When the SS co-
incides with the ,B-nullcline's local maximum the firing
threshold is zero: the SS is no longer stable and the system
oscillates spontaneously.
A study of the vector field throughout the phase plane

shows that the trajectories of Eqs. 1 and 2 are globally
bounded. Thus the cAMP system has all the properties of
excitability: unique SS, global boundedness, and threshold
behavior.

Response of the PCOD to periodic
parameter modulation
To see one of the most important advantages of using os-
cillatory instead of steady Ca21 signaling, we first need to
establish the system's response to different values of con-
stant q. Fig. 4 shows the relationship between q and the
amplitude of the spontaneous cAMP oscillations. For q < qc

109, the system is stable, and no spontaneous oscillations
occur. Large amplitude oscillations arise for q 2 q* 111.
Note in particular that no sustained oscillations occur when
q is held fixed between 100 and 105.
Now suppose q increases monotonically with increasing

Ca21 concentrations and that Ca2+ oscillations modulate q
between 100 and 105. In other words, we assume that a Ca2+
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FIGURE 4 Amplitude of spontaneous oscillations for constant q. The
amplitude 1111 is defined as the difference between the maximum and mini-
mum values of 1 in one period. Spontaneous oscillations (indicated by a
nonzero amplitude) occur when the steady state loses stability, which hap-
pens when q> qC 109. Large amplitude oscillations occur for q 2 q*
111. The double-headed arrow marks the extreme values of q(t) that gen-
erated the large cAMP oscillation in Fig. 5.

rise inhibits adenylyl cyclase. Ca2" oscillations can vary, in
the same cell, from spiky to sinusoidal depending on ex-
perimental conditions, such as a neurotransmitter concen-
tration (Lakatta et al., 1985; Wakui et al., 1989). We start by
using rectangular modulation of q not only to simulate spiky
Ca2" oscillations but also because in this case the origin of
parametric oscillations can be readily understood in terms of
the super- and subthreshold perturbations. Fig. 5 shows the
surprising result that periodically modulating q generates
large amplitude cAMP oscillations that continue as long as
the modulation occurs. Why does the modulation of q be-
tween two values produce large amplitude oscillations while
no oscillations occur with q fixed at a value in that range?
As q jumps between 100 and 105, the ,B-nullcline in Fig.

3 C alternates between the dotted and solid curves. The sys-
tem starts with q = 100 at the stable SS, point C in Fig. 3
C. The system remains in this state until q suddenly jumps
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FIGURE 5 Large amplitude cAMP oscillations (solid curve) resulting
from periodic modulation of q (dotted curve). The rectangular modulation
function has baseline value qo = 100, period T = 100, amplitude 8 = 5, and
duty cycle DC = 0.2. These large oscillations occur despite the maximum
q(t), 105, being less than qc, the minimum value of constant q needed to
generate spontaneous oscillations. The modulation period is large enough
that each q(t) pulse triggers a cAMP spike.
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Calcium Oscillation Detectors

to 105. At this instant the velocity landscape changes and the
,B-nullcline shifts to the solid curve. Note that at the instant
q jumps to 105 the system's state is still at point C, so the
conditions are identical to that which produced the large
pulse in Fig. 3 B. The time that q remains equal to 105 is long
enough for the state to move past C' so that, when q drops
back to 100, the trajectory will not be corralled by the dotted
f-nullcline, and a large pulse is generated. Since the modu-
lation period (T) is very long (T = 100) the system has ample
time to return almost to the SS (point C) before q jumps back
again to 105 and the cycle is repeated.

This analysis lies at the core of understanding the response
of an excitable system to periodic parameter modulation.
Thus it is worthwhile to expand and summarize the results
of previous paragraph. Whether periodic q modulation will
generate large cAMP oscillation depends on both the modu-
lation amplitude 8(t) = q(t) - qo (here the baseline qo equals
100) and the time q during which remains displaced from the
baseline. This time, , is the product of the modulation period
and the duty cycle (DC), which is the fraction of the modu-
lation period where 8(t) $ 0. 8 must be large enough that the
,3-nullclines for q = q0 and q = qo + 6 have the configuration
shown in Fig. 3 C. In particular, 8 must be large enough that
the SS for q = qo lies above the local maximum of the
,B-nullcline for q = q0 + S. Referring again to Fig. 3 C, Tmust
be long enough for the state to move for C at least to C' before
q returns back to qo. For 8 and T smaller than these minimum
values, large amplitude oscillations cannot be parametrically
excited.

Small modulations can excite large
amplitude oscillations
The cytotoxicity of high Ca2` concentrations requires the cell
to keep the Ca2` concentration low. This requirement im-
poses a number of constraints on using Ca2+ as a signaling
molecule (see Discussion). Fig. 6 shows two important prop-
erties of PCODs that allow them to compensate for these
constraints. This figure shows how the amplitude of the
cAMP oscillation depends on the amplitude of the rectang-
ular modulation function. The abscissa is the percent change
from the baseline value (qo = 100). The modulation period
and the duty cycle were fixed to T = 100 and DC = 0.2.
The first important property to be gleaned from this graph

is that the fractional change in q needed to excite large am-
plitude cAMP oscillations is small; -3% modulation of q
suffices. By contrast, if q were not periodically modulated
but held at a fixed value, q would need to increase by - 11%
(indicated by the arrow) from the baseline value before large
cAMP oscillations would be seen at q = q*. Even at this
value the oscillation amplitude (indicated by the square)
would be smaller than when q is modulated.

This property of PCODs shows an advantage Ca21 oscil-
lations have over a steady Ca2+ signal. Assuming again that
q increases monotonically with increasing Ca21 concentra-
tion, Fig. 6 shows that the PCOD responds more strongly to
an oscillatory Ca2" signal than to a high steady Ca2" signal
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FIGURE 6 cAMP oscillation amplitude (circles) as a function of q(t)
modulation amplitude. The q(t) waveform was rectangular as in Fig. 5. The
abscissa is the percent change of q(t) from the baseline value, qo = 100. The
almost flat response profile is an essential quality of receivers of frequency
encoded information; it allows the output of the receiver to be independent
of the signal strength. The arrow shows the change needed to attain the value
of q*, and the square shows the resulting amplitude of the spontaneous
oscillations. The modulation function had a period of 100 and a duty cycle
of 0.2.

even when the peak of the oscillation is lower than the steady
signal. In other words, small amplitude Ca21 oscillations are
more effective in exciting a PCOD than a high steady Ca21
signal.

Fig. 6 also shows that periodic negative modulation of q
can also elicit large amplitude cAMP oscillations. The origin
of these large cAMP oscillations can be understood using
Fig. 3 C, but this time let the f-nullcline for q = 100 be solid
and let the dotted f3-nullcline be that for q = 95. Starting from
A, when q drops to 95 the state will follow a leftward and
upward trajectory to C. Provided q remains at 95 long enough
for the state to approach C, then when q jumps back up to
100 the state will move rightward and downward, clearing
the hump of the solid ,B-nullcline and generate a large spike.
This result means that large amplitude cAMP oscillations
may also be generated in some cells having type I or type III
adenylyl cyclase, which are activated by Ca21 (Choi et al.,
1992; Wu et al., 1993).
The second important property of a PCOD is that the

cAMP oscillation amplitude is almost independent of the
modulation amplitude beyond a critical value (-3% in this
particular case). If information is encoded in the Ca21 os-
cillation frequency, then unambiguous interpretation of the
message requires that the output of the detector be indepen-
dent of the signal strength. This independence arises because
the output of the PCOD is determined by its own internal
dynamics; the Ca21 signal only triggers the generation of the
large cAMP pulse. The PCOD behaves as a high input im-
pedance device, which draws little power from the signal
source.

Frequency response of a PCOD
Fig. 7 shows the amplitude and the normalized period of the
cAMP oscillations as functions of the period of rectangular

Iza and Spangler 1 625
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FIGURE 7 Amplitude (circles) and normalized period (triangles) of
cAMP oscillations as functions of the q(t) modulation period. The q(t)
waveform was similar to that in Fig. 5, except for the modulation period.
The flat amplitude response for T> 15 shows that PCODs are poor frequency
discriminators, unlike, say, a tuned tank circuit. The normalized period is
the period of the cAMP oscillations divided by the modulation period, Tp-
coD/T. The period of the PCOD is the smallest integer multiple of T that is
greater than the time required for the PCOD to return to the SS after a
suprathreshold perturbation, a time of -80.
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modulation of q(t). The normalized period is the period of
the cAMP oscillations divided by the modulation period,
TpcoJT. 5 and DC were fixed to 5 and 0.2. The amplitude
is almost constant (-500) down to T 15 then drops to less
than 10 for T = 10. Large amplitude spikes occur for T
between 10 and 15, but the oscillations are not periodic and
appear to be chaotic. We also found chaoticlike behavior
when modulation parameters took on values in the transition
regions of Figures 6 and 9.

This amplitude-period plot or tuning curve highlights a
fundamental difference between PCODs and some other de-
vices, such as a tuned tank circuit, that can also be used to
detect oscillatory signals. A tank circuit responds most avidly
to signals whose frequencies are close to its natural fre-
quency, so its tuning curve has a more or less bell shape; the
sharper the bell shape, the greater the frequency discrimi-
nation. PCODs, by contrast, respond equally well to almost
all frequencies, so they make poor frequency discriminators.
We shall see later that this property of PCODs allows Ca2+
oscillations to behave as cellular timekeepers.
The period of the cAMP oscillations is an integral multiple

of the Ca21 oscillation period. When the Ca21 oscillation
period is long (T 100), TPCOD equals T because the cAMP
system has time to return to near its SS before the next Ca>2
spike arrives to trigger another cAMP pulse. For intermediate
modulation period lengths (T 75 down to T 14) the
cAMP oscillation period is longer than the modulation pe-
riod. This subharmonic response (TpcoD/T> 1) can be readily
understood with the help of Fig. 8. Fig. 8 A shows the q(t)
modulation over one period of the cAMP oscillation. The
modulation period T = 20 is one-fourth of TPCOD- The so-
lution trajectory in the phase plane is shown in Fig. 8 B. The
circles show where the modulation pulses occurred; the let-
ters correspond to the pulse labels in Fig. 8 A. Pulses c and
d occur during phases of the cycle far from the SS point,

60 [
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FIGURE 8 The subharmonic response, TpcxD,JT> 1, can be understood by
examining the phase ofthe system (a, g3) where the modulation pulse occurs.
A shows that q(t) pulses at times c and d have little effect, while the pulse
at a has a small effect and a large spike is generated at b. The circles in B
show the phase where the pulses occurred. Pulses a and b occur when the
phase system is near the SS, which is where the system is most sensitive
to perturbations. Pulses c and d occur when the system is insensitive to
perturbations, analogous to the relative refractory period in nerve axons.

which is where the cAMP system is most sensitive to per-
turbations. Accordingly, these q(t) pulses have no percep-
tible effect on the trajectory. Only when the system is near
the SS do small q(t) pulses have appreciable effect; pulse a
excites a small response and pulse b initiates a full cAMP
spike. Thus the period of the cAMP oscillations is the small-
est integer multiple of the Ca" oscillation period that is
greater than the time required for the cAMP system to return
to the SS after a suprathreshold perturbation, a time of -80
in this case.
To understand why large amplitude oscillations disappear

when Tis small (T 10) we return to Fig. 3 C. When qjumps
from 100 to 105 the system starts to move from C, rightward
on the trajectory CC'. But because T (= T X DC) is so small,
when q drops back to 100 the state has not moved beyond
C', and it becomes corralled by the dotted ,B-nullcline. The
energy analogy provides an alternative explanation. With the
energy profile in Fig. 1 Cthe ball begins to move, but because
the modulation period is short the ball does not move ap-
preciably before the energy profile switches back to that in

40'
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Fig. 1 A where it begins to relax back to the stable SS. Thus
the ball is simply jostled back and forth at the modulation
period.

Response of the PCOD to sinusoidal
parameter modulation
We have been using a rectangular modulation function; now
assume that q(t) varies sinusoidally between 100 and 105.
Fig. 9 shows the amplitude and TpCODIT as a function of the
modulation period T. The response is similar to that shown
in Fig. 7 except that now the PCOD no longer responds to
long period modulation.
The generation of large amplitude oscillations at moderate

frequencies and the disappearance of large amplitude oscil-
lations at high frequencies in this case can be understood by
using the same reasoning used as when q underwent rec-
tangular modulation. The disappearance of large amplitude
oscillations at low frequencies is new and points out another
property of the signal required for parametric excitation.

With low frequency rectangular modulation, although the
period between pulses is long, the transition from q = 100
to q = 105 is instantaneous. Because T is long in this case,
the state in Fig. 3 C has time to move beyond C' before q
returns to 100 and the system fires. With sinusoidal modu-
lation the 13-nullcline changes continuously between that for
q = 100 and q = 105. If the change is slow enough, the state
has time to relax to the slowly moving SS. Thus the system
is always close to the SS so no firing occurs. Thus the os-
cillations are small, simply reflecting the movement of the
SS and its period equals the modulation period.
Thus for a signal to elicit large amplitude oscillations, the

rate of change of the signal must be faster than the PCOD's
relaxation rate and slower than its excitation rate (inverse of
the time for the state to go between C and C' in Fig. 3 C).
What this means is that the dynamics of the PCOD effec-
tively filters out both high frequency noise (small ) and slow
variations of Ca2+.
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The PCOD can extract information from
a noisy signal
The ability of a PCOD to filter out high frequency noise
becomes clear when we add Gaussian noise to the clean rec-
tangular modulation function shown in Fig. 10 A. The solid
curve in Fig. 10 B is the response to the clean rectangular
modulation function in Fig. 10 A. The dotted curve in Fig.
10 B is the response to the noisy modulation function. At this
scale the differences are imperceptible; the inset shows the
effect of the noise when the system is near the SS. We used
a long (T = 150) modulation period so the system could
spend a long time near the SS where it is most susceptible
to noise, thereby maximizing the chance of getting a spurious
firing from a noise spike.

DISCUSSION
One of the main functions of Ca2" in cells is to carry in-
formation of external events to the intracellular biochemical
machinery. Early Ca21 measurements in a population of cells
indicated that a change in an external signal (neurotrans-
mitter, hormone, drug, etc.) caused a shift in the steady level
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FIGURE 9 This figure is similar to Fig. 7, except q(t) is sinusoidally

modulated between 100 and 105. The system responds similarly to sinu-
soidal and rectangular q(t) modulation except when the modulation period
is large. See text for explanation.
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FIGURE 10 PCODs are virtually immune from high-frequency noise
spikes. A shows a clean q(t) signal (solid curve) and one corrupted by
high-frequency noise (dotted curve). B shows that the PCOD responses to
the noisy (dotted) and clean (solid) signals are virtually identical. The inset
in C shows the small effect of the noise.
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of intracellular Ca". In other words these experiments sug-
gested that information was encoded in the amplitude of the
Ca> signal. Ensemble averaging, however, concealed a
more dynamic and complex Ca> response to extracellular
signals (Wilson et al. 1987). Later Ca>2 measurements in
single cells revealed that Ca>2 oscillations are a common
response to extracellular signals. See Berridge and Dupont
(1994) for a short compendium of cells showing Ca>2
oscillations.
The use of oscillating Ca>2 signals may be Nature's so-

lution to the constraints of using Ca>2 as a signaling mole-
cule. Rasmussen and Barrett (1984) call Ca>2 a minatory
signal because it kills at high concentrations. Thus cells have
evolved a constellation of mechanisms to keep Ca>2 low
(-- 100 nM at rest). But by letting Ca2' rise moderately in
response to external signals Nature has transformed a lethal
toxin into one of the most versatile second messengers.

Since the resting Ca>2 concentration is so low, only a small
Ca>2 influx is needed to cause a large fractional change in
the cytosolic Ca>2 concentration. This makes Ca>2 signaling
very economical inasmuch as only a small amount of energy
is needed to remove the added Ca>2 from the cytosol and
restore the resting state. The price of economy, however, is
noise. Random opening of Ca>2 channels, unrelated to ex-
ternal signals, can also cause large fractional changes in the
Ca21 concentration and potentially wreak havoc on an am-
plitude based Ca>2 signal.

Frequency coding of information offers a greater immu-
nity from noise corruption (Rapp et al., 1981). To take ad-
vantage of frequency coded information there must be re-
ceivers that can respond specifically to an oscillatory signal.
Li and Goldbeter (1989) developed a receiver based on a
model for receptor desensitization. Their model, like a tank
oscillator, responds preferentially to a limited range of ago-
nist oscillation frequencies. The frequency specificity arises
from the interplay of the kinetics of receptor desensitization
and the periodically changing kinetics of binding of agonist
to receptor.
The PCODs are another class of reactions that can respond

to oscillatory Ca>2 signals and function as receivers. This is
potentially a very large class because many oscillators can be
made into excitable systems by altering some parameters.
Rapp (1979) lists over 125 cellular oscillators, and many
more (including the Ca>2 oscillators) have been discovered
in the intervening 15 years. It is quite possible that many of
these oscillators have kinetic parameters that are modulated
by Ca>2 and might function as PCODs.
One system that normally operates as a PCOD-though it

is not thought of as such-is the Ca>2 control system in heart
cells. The rhythmic membrane depolarization (the external
signal) initiated by the sinoatrial node causes a periodic in-
tracellular Ca>2 pulse. This Ca>2 pulse is received by the
sarcoplasmic reticulum (SR), which triggers a regenerative
Ca>2 release. It is the SR's ability to regeneratively release
Ca>2, known as calcium-induced calcium release, that con-
fers excitability on the Ca>2 control system. The released

traction. Ca2+-ATPases on the SR membrane pump the Ca>
back into the SR returning the system to the SS and ready for
the next Ca> pulse. In this way the Ca2+ control system
acting as a PCOD is entrained to the cardiac pacemaker,
producing a correctly timed contraction. Our initial studies
used a model for Ca2+ control in heart cells as a PCOD that
gave results similar to those for the cAMP system. The de-
cision to use the cAMP instead of the Ca2+ control system
was made simply to avoid the confusion of having Ca2+ as
both signal and output.

PCODs are near ideal Ca2+ oscillation receivers

The use of Ca>2 as a signaling molecule imposes a number
of demands on the receiver. Noise is inevitable and, as Fig.
10 shows, PCODs can accurately extract the information
from even a badly corrupted signal.
The demand to keep cytosolic Ca2+ low imposes another

constraint on the Ca2+ signaling system. Cells contain cy-
tosolic Ca2+ buffers, Ca2+-ATPases, and Ca2+ exchangers to
maintain Ca>2 low. While keeping cytosolic Ca2+ low they
also limit the range of Ca2+ signaling to -5 ,um (Allbritton
et al., 1992). Thus the magnitude of the Ca2+ signal decays
rapidly as it propagates from the oscillation generator. This
decay is particularly acute for high frequency Ca2+ oscilla-
tions because diffusion acts as a low-pass filter. (The mag-
nitude of the gradient can be estimated from the frequency
dependent spatial decay length, 1 (vj) - (D/(7rvr))"12, where
vj is the frequency of thejth Fourier component of the signal
and D 2 X 10- cm2/s (Allbritton et al., 1992) is the Ca2+
diffusion coefficient. The amplitude of a 1-Hz rectangular
Ca2+ signal with 10% duty cycle would decrease by 66% just
2 ,um from the generator.) The output of a receiver of fre-
quency encoded signals should not depend on the magnitude
of the signal. Otherwise, the meaning of the message would
depend on the distance between the signal source and re-
ceiver. A PCOD satisfies this requirement, as shown in Fig.
6, because its output is determined by its internal dynamics;
the Ca2+ signal only triggers the detector.

Since Ca2+ is toxic at high concentrations it is beneficial
to use the smallest practical Ca2+ signal. Fig. 6 shows that
PCODs can respond more strongly to a small oscillatory Ca2+
signal than to a high steady Ca2+ signal even when the peak
of the Ca2+ oscillation is lower than the steady signal. This
property of PCODs, coupled with PCODs' noise immunity,
allows the cell to use small Ca2+ oscillations for signaling.

Synchronization of different reaction pathways
PCODs are made to be nonoscillatory although they can be
made to oscillate spontaneously, in this example by raising
q above qc. There is an important advantage, however, of
being nonoscillatory and entrained to the Ca2+ oscillations.
Suppose there are two reaction pathways, which can function
as PCODs, PCOD1 and PCOD2, which produce outputs 01

and 02 that are substrates for another common reaction. Sup-
Ca2+ starts a sequence of reactions resulting in muscle con-
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pose Ca" is raised to a steady level that causes PCOD1 and
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PCOD2 to oscillate spontaneously. (Note that now we are
using the name PCOD1 for the reaction pathway, not im-
plying that it functions as a PCOD.) It is extremely unlikely
that PCOD1 and PCOD2 would have exactly the same in-
trinsic oscillation frequency so their outputs would move out
of phase with each other. Thus the common reaction using
O1 and 02 would have the proper ratio of these two substrates
only for brief instants.

Instead, now suppose that PCOD1 and PCOD2 are en-
trained to the Ca21 oscillation. Then the oscillation frequency
is not set by their internal dynamics but by the Ca21 oscil-
lations. Then the common reaction sees a fairly constant ratio
of 01 and 02.

Here the Ca21 oscillator behaves as a master timekeeper
and the Ca21 oscillations as the ticks of a clock providing
temporal coordination between PCOD1 and PCOD2. As the
external signal changes the frequency of the Ca21 oscilla-
tions, the pace of these related reactions is also changed.
Because PCODs have flat frequency responses (Fig. 7) the
outputs of PCOD1 and PCOD2 would be constant despite
changes in the Ca21 oscillation frequency. Thus the common
reaction would simply be driven faster or slower without
seeing changes in the amplitude of the substrates 01 and 02
The efficiency and throughput of the common reaction may
be enhanced by the temporal coordination of PCOD1 and
PCOD2, thereby suggesting another possible advantage of an
oscillatory rather than a steady Ca21 signaling mechanism.
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