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ABSTRACT We present a model that provides a unified framework for studying Ca2! sparks and Ca2! waves in cardiac
cells. The model is novel in combining 1) use of large currents ("20 pA) through the Ca2! release units (CRUs) of the
sarcoplasmic reticulum (SR); 2) stochastic Ca2! release (or firing) of CRUs; 3) discrete, asymmetric distribution of CRUs along
the longitudinal (separation distance of 2 !m) and transverse (separated by 0.4–0.8 !m) directions of the cell; and 4)
anisotropic diffusion of Ca2! and fluorescent indicator to study the evolution of Ca2! waves from Ca2! sparks. The model
mimics the important features of Ca2! sparks and Ca2! waves in terms of the spontaneous spark rate, the Ca2! wave
velocity, and the pattern of wave propagation. Importantly, these features are reproduced when using experimentally
measured values for the CRU Ca2! sensitivity ("15 !M). Stochastic control of CRU firing is important because it imposes
constraints on the Ca2! sensitivity of the CRU. Even with moderate ("5 !M) Ca2! sensitivity the very high spontaneous spark
rate triggers numerous Ca2! waves. In contrast, a single Ca2! wave with arbitrarily large velocity can exist in a deterministic
model when the CRU Ca2! sensitivity is sufficiently high. The combination of low CRU Ca2! sensitivity ("15 !M), high
cytosolic Ca2! buffering capacity, and the spatial separation of CRUs help control the inherent instability of SR Ca2! release.
This allows Ca2! waves to form and propagate given a sufficiently large initiation region, but prevents a single spark or a small
group of sparks from triggering a wave.

GLOSSARY

Most symbols were defined in the companion paper (Izu et
al., 2001). Here we list new symbols and those that occur
frequently in this paper.

x, y spatial coordinates (!m)
t time coordinate (ms)
C free Ca2! concentration (!M)

DCx, DCy Ca2! diffusion coefficients along x
and y (!m2/ms)

S stochastic switching function
equaling either 0 or 1

Pmax maximum probability of Ca2! spark
occurrence/calcium release unit/ms

P probability of Ca2! spark
occurrence/calcium release unit/ms

n Hill coefficient in definition of P
K Ca2! sensitivity parameter in

definition of P (!M)
!x, !y spatial separation of Ca2! release

units (CRUs) along x and y (!m)
" molar flux of CRU for 2-

dimensional diffusion domains
(pmol/ms/!m)

ISR current through the CRU (pA)
Topen duration of current flow through

CRU (ms)
C0 baseline Ca2! concentration (!M)
# waiting time distribution

p(t # $) probability of a CRU not firing in
time t # $

P(X % 1, t # $) probability of at least one CRU
firing in time t # $

INTRODUCTION

Slowly ("100 !m/s) propagating waves of elevated Ca2!
concentration (Ca2! waves) appear to be a ubiquitous find-
ing and have been observed in a wide diversity of cell types
including skeletal (Endo, et al., 1970) and cardiac muscle
(Fabiato and Fabiato, 1972), medaka eggs (Ridgway, et al.,
1977), and astrocytes (Cornell-Bell and Finkbeiner, 1991).
In cardiac atrial cells that lack transverse tubules (T tu-
bules), physiological activation of the myofibrils in the
interior of the cell depends on the propagation of a Ca2!
wave from the sarcolemma to the cell’s center (Berlin,
1995; Hüser et al., 1996). In cardiac ventricle cells, Ca2!
waves are not physiological and are believed to be a patho-
logical manifestation of Ca2! overload and might trigger
ventricular arrhythmias (Lakatta and Guarnieri, 1993).
Ca2! waves are a natural consequence of regenerative

Ca2! release by the sarcoplasmic reticulum or Ca2!-in-
duced Ca2!-release (CICR) (Endo, et al., 1970; Ford and
Podolsky, 1970). All models of Ca2! waves in skeletal and
cardiac muscle have CICR at their core and the evolution of
Ca2! wave models reflects the growth of knowledge of
excitation–contraction coupling in muscle. For example, an
early mathematical model of Ca2! waves (Backx et al.,
1989) distributed Ca2! release sites uniformly throughout
the cytoplasm. However, in normal muscle cells, Ca2!
release sites are distributed in discrete bands at the z-lines
(Carl, 1995). With the discovery of Ca2! sparks (Cheng et
al., 1993) the discrete nature of Ca2! release was resolved
to the opening of a few ryanodine receptors (RyRs) on the
z-line in cardiac muscle (Shacklock et al., 1995). In addi-

Received for publication 24 May 2000 and in final form 16 October 2000.
Address reprint requests to Leighton T. Izu, University of Maryland School
of Medicine, Department of Medicine Division of Cardiology, 22 South
Green St., Baltimore, MD 21201-1595. Tel.: 410-706-2675; Fax: 410-706-
8610; E-mail: lizu@umaryland.edu.
© 2001 by the Biophysical Society
0006-3495/01/01/103/18 $2.00

103Biophysical Journal Volume 80 January 2001 103–120



tion, Cheng et al. (1993, 1996), speculated that Ca2! waves
arise from the collective firing of Ca2! sparks.
Contemporary models of Ca2! sparks and Ca2! waves

restrict Ca2! release to the z-lines (Keizer et al., 1998;
Keizer and Smith, 1998; Izu et al., 1999; Lukyanenko et al.,
1999). However, understanding the relationship between
Ca2! sparks and Ca2! waves in living cells has been com-
plicated by asymmetries in cell structure, asymmetries in the
Ca2! spark profile, anisotropic diffusion of the Ca2!-bound
fluo-3, uncertainties regarding the Ca2! sensitivity of the
Ca2! release units (CRU), and the Ca2! currents required to
generate Ca2! sparks.
In this paper, we present a model that provides a unified

framework for studying both Ca2! sparks and Ca2! waves.
The following are key elements in this model.

1. Large CRU currents. By using relatively large CRU
currents (5–20 pA; Izu et al., 2001) the model generates
realistic Ca2! sparks and realistic Ca2! waves while
maintaining CRU Ca2!-sensitivities compatible with ex-
perimental measurements (Lukyanenko and Györke,
1999).

2. Stochastic triggering of Ca2! release. Previous models
of Ca2! waves (except Keizer and Smith, 1998) have
used a deterministic rule for triggering Ca2! release;
release occurred when the Ca2! concentration exceeded
some fixed value C*. The use of stochastic instead of
deterministic dynamics is important for two reasons.
First, sparks occur spontaneously and randomly (Cheng
et al., 1993) so a unified framework for studying sparks
and waves must provide for the stochastic firing of the
CRUs. Second, deterministic and stochastic systems can
behave very differently when the Ca2! sensitivity of the
CRUs is high. In a deterministic system, waves can occur
even when the sensitivity is arbitrarily high. However, in
a stochastic system, even with moderately high CRU
Ca2! sensitivity ("5 !M), the large number of sponta-
neous sparks would trigger so many Ca2! waves at once
that observing a well-defined wave would be almost
impossible.

3. Asymmetric distribution of discrete CRUs, and
4. anisotropic diffusion of Ca2! and of mobile buffers. An
important difference between our model and that of
Keizer and coworkers (Keizer et al., 1998; Keizer and
Smith, 1998) is how the Ca2! buffers (endogenous and
Ca2! indicator) are handled. The Keizer models do not
include buffers, and they compensate for the absence of
buffers by reducing the free Ca2! diffusion coefficient
"10 fold. We will show that buffers endow the system
with a property we call “superadditivity” that has pro-
found effects on Ca2! signaling, which extend much
further than simply slowing Ca2! diffusion.

The effect of three of the four key features in this model
on Ca2! wave propagation has been investigated by others.
The effect of discrete, asymmetric distribution of CRUs was

studied by Bugrim et al. (1997) and anisotropic Ca2! dif-
fusion was addressed by Kargacin and Fay (1991) and
Girard et al. (1992). Keizer and Smith (1998) examined the
effect of stochastic firing of CRUs on wave propagation.
What is novel in our model is the combination of large CRU
currents, stochastic triggering of CRU release, asymmetric
distribution of CRUs, and anisotropic diffusion.

METHODS

Figure 1 shows the geometry of our model. A is the 3-dimensional (3D)
schematic of a ventricular cell. The x-direction is the cell’s longitudinal
axis. The three vertical planes occur at the z-lines and are spaced a distance
!x ($2 !m) apart. The black dots in the y–z plane are the CRUs. The
horizontal plane is the 2-dimensional (2D) slice on which we will carry out
our simulations. At present, we cannot do a full 3D simulation because of
limitations in computational power. Figure 1 B shows CRUs in a y–z plane.
Ca2! release by discrete CRUs will generate concentration gradients in all
directions. To eliminate gradients along z, the discrete CRUs along z are
replaced by line sources that extend from %& # z # & and spaced a
distance of !y (0.4 or 0.8 !m) along y as shown in Fig. 1 C. These infinite
line sources induce symmetry in z making planes at any z equivalent,
thereby reducing the problem from three to two dimensions. Figure 1 D
shows the plane on which the model is defined. The line sources intersect
the x–y plane and at regular intervals of !x along x and !y along y. These
intersections are called lattice sites.
The model equations are the same as Eqs. 2–7 in Izu et al. (2001), that

describe the so-called “Smith buffer model.” Apart from the restriction to
two spatial dimensions, the only difference here is the differential equation
for the free Ca2! concentration C(x, y, t) that is now

&C'x, y, t(
&t

' DCx
&2C
&x2 ( DCy

&2C
&y2 ( RB'C, FB( ( RD'C, FD( ) Jp

( Jleak ( !
i, j

"'xi , yj(S'xi , yj , t; Topen(*'x ) xi(*'y ) yj(.

(1)

The summation term is new to this paper. Each term in the summation
represents a point source (the CRU) located at the lattice site (xi, yj) that
produces a molar flux ". The lattice sites are spaced !x apart (2 !m, the
sarcomere length) along the longitudinal axis of the cell (x-axis) and !y
apart (0.4 or 0.8 !m) in the transverse direction (y-axis). Figure 3, inset,
and Fig. 4 show the lattice. CRUs on a column (fixed x) are said to be on
a z-line. S is a stochastic function taking values of either 0 or 1, so switches
the CRU on (firing) or off. After S becomes 1, it stays at this value for time
Topen. The probability that the CRU will fire in time )t is P(C(x, y, t), K,
n) ! )t, where P is the probability of firing per unit time. P is a function of
the ambient Ca2! concentration C(xi, yj, t) and is given by

P'C'x, y, t(, K, n( '
PmaxC n

K n ( Cn . (2)

P was determined as follows. Let r be the number of sparks/100 !m
linescan/ms. Assume that the microscope’s lateral (y) and axial resolution
(z) is 0.5 and 1 !m, respectively. If CRUs are arranged in a square lattice
on the z-line plane with spacing !y $ 0.8 !m, then there will be "2 CRUs
(or "6 for !y $ 0.4) in a 0.5 !m * 1 !m confocal sample area at each
z-line. Assuming a sarcomere length of !x $ 2 !m, then, in a 100-!m
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confocal linescan, there are NCRU $ 2 CRU/z-line * 50 z-lines/100 !m
linescan $ 100 CRU/100 !m linescan. Then P $ r/NCRU. Note that Pmax
has units of sparks/ms/CRU. The spark rate, the Hill coefficient n $ 1.6
and the Ca2!-sensitivity factor K $ 15 !M are taken from Lukyanenko
and Györke (1999). Using a spark frequency of 10 sparks/100 !m lines-
can/s at a Ca2! concentration of 100 nM, for NCRU $ 1 CRU/!m, Pmax
equals 0.3/CRU/ms (or 0.05/CRU/ms for !y $ 0.4). Note that Pmax is kept
at these values (0.3 or 0.05) in simulations where K is varied.
The source strength " requires some explanation. Because a line source

is not equivalent to a linear array of discrete CRUs (shown in Fig. 1 B), we
need to somehow adjust the molar flux of the line source to approximate
the molar flux of a point source. If Ca2! were being released from a CRU
into a 3D volume, then "3 $ ISR/2F, where ISR is the current and F is the
Faraday. Note that "3 has units of mole/ms. Because the model is 2D, " $
"2 has units of mole/ms/!m. What value should we use for "2 in place of
"3? Although no value of "2 will give the identical space–time Ca2!
distribution in 2D as "3 will in 3D, we define an “equivalent” source
strength "2 as one that gives the same concentration as "3 at r $ r! (the
Euclidean distance) and t $ t! in a linear system. Let C(r, t, d) be the
concentration at (r, t) in d $ 2, 3 dimensions. Then C(r, t, 3) $ ("3/
(4+Dr))erfc(z), C(r, t, 2) $ ("2/(4+D))E1(z2) where z $ r/+4Dt and E1 is
the exponential integral (Appendix A). For r! $ 0.5 !m, t! $ 5 ms, and D $
0.2 !m2/ms (the geometric mean of DCx and DCy), "2 $ 0.64 "3/!m. We
used this numerical conversion in all our simulations. With this conversion
factor, the sparks in the 2D model has about the same spatial spread and
time course as the 3D spark. For example, for ISR $ 20 pA the spark
FWHM along x at the end of 5 ms was 2 !m in 3D (Izu et al., 2001) and
1.9 !m in 2D.
We will vary ISR, Topen, K, and !y. The remaining parameters use the

following (standard) values (see Izu et al., 2001 for references): !x $ 2 !m

(Shacklock et al., 1995), n $ 1.6 (Lukyanenko and Györke, 1999), HB $
123 !M, kB! $ 100/!M/ms, kB% $ 100/ms, HD $ 50 !M, kD! $ 80 !M/s,
kD% $ 90/s, Vp $ 200 !M/s, Kp $ 184 nM, np $ 4, DCx $ 0.3 !m2/ms,
DCy $ 0.15 !m2/ms, DDx $ 0.02 !m2/ms, and DDy $ 0.01 !m2/ms, and
C0 $ 0.1 !M.
We used the reaction of Ca2! with fluo-3 described by Smith et al.

(1998) instead of the more complex set of reactions proposed by Harkins
et al. (1993) because of computational limitations. In our companion paper
(Izu et al., 2001), we found that the Harkins buffer model produced sparks
with more realistic F/Fo and slightly larger spatial spread than did the
Smith model. However, computations took considerably longer with the
Harkins model and required a finer spatial discretization than the Smith
model, making the computational costs prohibitive. We consider possible
ramifications of using the Harkins model in the Discussion.

Numerical methods

The model equations were discretized and numerically solved using Fac-
simile as described in Izu et al. (2001). The stochastic opening of a CRU
was simulated as follows. At regular intervals of time )t (typically 1 ms),
a uniformly distributed random number u between 0 and 1 is generated.
Note that, as C 3 &, P/Pmax 3 1 so the probability that u is less than
P/Pmax approaches 1. Thus, the CRU fires when u # P/Pmax by setting S
to 1, and S remains unity for Topen ms. After closing, the channel does not
reopen.
The computational grid was a rectangle 20 !m* 20 !m with mesh size

of 0.1 !m along both x and y directions. We were constrained to use these
small domains because a typical simulation of 150 ms takes "24 hrs on a
400 MHz Pentium II processor with 256 MB RAM, and computation time

FIGURE 1 Geometry of model.(A) Three-dimensional schematic of a cardiac ventricular cell. The longitudinal axis of the cell is in the x-direction. The
three vertical planes represent the z-lines and are spaced a distance of !x ($ 2 !m) apart. The y–z plane at the z-line contain the CRUs (dots) that are
symmetrically spaced along the y and z directions. The horizontal plane shown in the center is the domain on which the model equations are defined. (B)
An individual y–z plane and its CRUs. Ca2! release by discrete CRUs will generate concentration gradients in all directions. To eliminate gradients along
z, the discrete CRUs along z are replaced by line sources that extend from %& # z # & as shown in C. (D) The 2D slice of the ventricular cell with CRUs
represented by line sources spaced !x apart along x and !y ($ 0.4 or 0.8 !m) along y.
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grows faster than computational area. Neumann boundary conditions were
imposed on all edges.

RESULTS

The basic principle behind wave evolution in this model is
simple. Waves originate and are sustained as Ca2! released
from one or more CRUs diffuse to neighboring CRUs and
raise the probability that these neighbors will release Ca2!
(or “fire”) and, in turn, induce other neighbors to fire. Our
model of Ca2! waves is analogous to piles of gunpowder
wherein igniting one pile may ignite the neighboring pile.
The probability that the neighbor will ignite depends on
how far the piles are from each other (!x, !y), the rate of
heat production (ISR), the total amount of heat produced
from each pile (ISR * Topen), and the thermal stability of the
gunpowder (K). The challenge is to get a quantitative un-
derstanding of the conditions needed to initiate a wave, of
how the wave evolves, the wave velocity, etc.
We start by analyzing a deterministic linear model for

waves on lattices even though it turns out to be inadequate
for understanding waves in muscle cells for the following
reasons.

1. The linear analysis is a natural first attempt because
linear systems are simple and exactly solvable. So if they
prove to be accurate descriptions of waves in nonlinear
systems, then virtually everything about waves will be
known.

2. Because the linear solution is given in terms of known
functions (see Eq. 3), it provides a standard to check the
accuracy of the numerical algorithm used to solve the
model equations.

3. Most importantly, the failure of the linear approximation
to accurately predict properties of waves in the nonlinear
system reveals an essential difference between nonlinear
and linear systems: superadditivity. We examine the
origin of superadditivity and show its importance in
understanding waves in cells.

Next, we examine the propagation of a Ca2! wave and
extract the basic steps in the propagation of waves on
rectangular lattices. Because the firing of CRUs is stochas-
tic, we need to develop the probabilistic machinery to esti-
mate whether a given set of model parameters will be able
to support a wave, predict the wave’s speed, and estimate
the number of CRUs required to trigger a wave.

Linear systems

We would know virtually everything about waves if we
could predict the Ca2! concentration at any point (x, y, t)
given the history of firings of CRUs. This prediction is not
possible in nonlinear systems but is possible in linear sys-
tems. Linear systems, endowed with the property of addi-
tivity, allow us to calculate C(x, y, t) knowing the space–

time distribution of Ca2! from a single spark. C(x, y, t) is
given by

C'x, y, t( ' !
i,j

qij
4+"DxDy

Ẽ1'xi ) x, yj ) y, t ) tij , Topen(

( C0 . (3)

The addend, derived in Appendix A, gives the space–time
Ca2! distribution for a single CRU with constant molar flux
qij that is open for time Topen. Note that the solution takes
account of anisotropic diffusion. The summation is taken
over all sites that have fired. tij is the time the channel at
(xi, yj) had fired. This fundamental equation contains all the
information about wave propagation on discrete lattices in a
linear deterministic system.
The analytic power of linear systems stems from the

ability to predict the Ca2! concentration at any point (x, y, t)
due to the firing of an arbitrary distribution of CRUs given
the Ca2! distribution due to a single CRU. The objective
here is to fit the Ca2! distribution from a single spark in the
presence of buffers and pump (nonlinear system) to that of
a linear system (see Appendix A),

C'x, y, t( '
q

4+"DxDy
Ẽ1'x, y, t, Topen(, (4)

that defines an equivalent flux q and diffusion coefficient
Dx. Dy always equaled Dx/2. Figure 2, A and B, show the
concentration profiles from the simulations (circles) and the
fitted function (solid curve) at t $ 5 ms (left profile) and 10
ms (right profile) after the channel opens. Panel A shows the
profile along x, and B, the profile along y. Figure 2, C and
D, show q and Dx; in a linear system, these parameters
would be time independent. Note that the values of Dx and
q determined from the x profile (up triangle) and y profile
(down triangle) are almost identical. This equality is impor-
tant because it means that the Ca2! concentration at an
arbitrary point (x, y, t) can be calculated using Eq. 3 using a
single pair (q, Dx) for any given moment. Time-dependent
changes in q and Dx simply arise from fitting the solution to
the nonlinear problem to that of a linear problem. If the
buffers were absent, then the system would be linear and q
and Dx would be invariant. There is no simple physiological
interpretation for the time dependency of q and Dx.
It is important to observe in Fig. 2 that the Ca2! concen-

tration is a very steep function of distance; it drops 1000-
fold within 1.5 !m from the source. A CRU at x $ 2 !m
would “see” a Ca2! concentration of just 179 nM, 10 ms
after the channel opens. Even if this concentration could be
maintained indefinitely, the mean waiting time for the CRU
to fire is 1/P(179 nM, 15 !M, 1.6) $ 3.98 s (see Appendix
B), so a single spark is unlikely to trigger a spark at an
adjacent sarcomere. This calculation is in accord with
Parker et al.’s (1996) observation that the probability of a
spark triggering another 2 !m away was zero.
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Triggering of sparks on adjacent sarcomeres is the sine
quo non of wave propagation in our model. Thus multiple
channels must fire within a short time interval to raise the
Ca2! concentration at an adjacent sarcomere enough to
trigger Ca2! release. We calculated C(x, y, t) using Eq. 3
and q, Dx values at t $ 10 ms for different configurations of
simultaneously firing CRUs shown in Fig. 3. The channel
configurations are labeled (a) 1 * 1, (b) 1 * 3, (c) 1 * 7,
(d) 2 * 7, and (e) 1 * 9, where the first and second num-
bers refer to the number of columns and rows of CRUs,
respectively. The inset in Fig. 3 shows a schematic of the
lattice, the arrangement of CRUs in a 2* 3 configuration.
The CRUs in a column are symmetrically displaced about
the origin so, for example, the coordinates of the 3 CRUs in
the 1* 3 configuration are (0, 0), (0,!!y), and (0,%ly),
where !y $ 0.8 !m. The rationale for choosing these
configurations will become evident later. For configuration
(d) the 2 columns are at x $ 0 and %2 !m. Fig. 3 A shows
the concentration along the x-axis (y $ 0) at t $ 10 ms for
configurations (a–e). Because of the steep Ca2! concentra-
tion profile, the firing of additional CRUs in b–e do not add
substantially to the concentration due to the single CRU at

the origin (a, lower curve). At this resolution, the profiles
for channel configurations b, c, d, and e are indistinguish-
able. Thus the linear model predicts that none of these
configurations of firing channels could raise the Ca2! con-
centration at x $ 2 !m sufficiently to substantially increase
the probability of firing within 10 ms.

Superadditivity in buffered systems

A buffered system behaves differently, however. Fig. 3 B
shows Ca2! concentration profiles derived from simulations
of the nonlinear system (buffers reactions and pump in-
cluded) for the same five configurations (the graphs for c
and e are virtually identical). In contrast to the linear sys-
tem, the firing of the flanking CRUs greatly increased the
Ca2! concentration along the x-axis.
The concentration profiles in Fig. 3 A are expected if the

effect of two or more sparks were additive. However, Fig.
3 B shows that the actual concentration exceeds the ex-
pected values. We call this property superadditivity. Su-
peradditivity arises simply because the free Ca2! buffers

FIGURE 2 Determination of “equivalent” q and Dx. Single spark profiles from simulations (circles) were fit to Eq. 4 by adjusting q and Dx. (A) The
profile along x at t $ 5 ms (r # 0) and t $ 10 ms (r , 0). (B) Similar to A, but shows the profile along y. The best fit values of q and Dx as functions
of t are shown in C and D. Up-triangles show the fit of the spark profile along x; down-triangles, along y. Simulations carried out using ISR $ 20 pA, Topen $
10 ms.
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become depleted. The addition of m moles of Ca2! causes a
drop in the available free buffer, so subsequent additions of m
moles result in a larger increase in the Ca2! concentration.
A consequence of superadditivity important for understand-

ing Ca2! wave propagation is that, when CRUs fire simulta-
neously, the range of Ca2! signaling increases tremendously.
This is seen in Fig. 3 B and is also illustrated in Fig. 3 C,where
the concentration at (x $ 2 !m, y $ 0) is plotted against time.
Note the tremendous amplification in the Ca2! concentration
as more CRUs fire. The maximum concentration attained 2
!m away from a single spark is 278 nM (a), whereas, at the
same distance from the center of seven sparks (c), the maxi-
mum concentration is 11.3 !M, 41 times larger.

Wave propagation in nonlinear systems

For a linear (additive) system, we can make a priori predic-
tions of wave properties, such as the wave speed based on

the properties of a single spark. However, because of su-
peradditivity in buffered systems, such predictions are not
possible. This does not mean, however, that there are no
predictive tools for nonlinear waves. Instead, the probabi-
listic tools we will develop below require more information
than that provided from a single spark as input data and
require some knowledge of how waves propagate on lat-
tices. Thus we first examine in detail how a wave propa-
gates on a rectangular lattice. Once we understand the basic
steps of wave propagation, we can set up approximations to
the Ca2! distribution in a wave, which are used in the
probabilistic equations. These equations are used to predict
wave properties, such as whether waves can exist for a
given set of parameters and the wave velocity.
Before proceeding, let us explain why we need these

predictive tools and why we cannot rely solely on numerical
solutions of the nonlinear model equations. The primary
reason is that these tools give us insight into the factors that

FIGURE 3 Ca2! concentration (C(x, y, t)) in (A) additive and (B, C) superadditive systems. (A) and (B) show the Ca2! spatial distribution along x at y $
0 at t $ 10 ms due to firing of CRUs in the following configurations: (a) 1* 1, (b) 1 * 3, (c) 1 * 7, (d) 2 * 7, and (e) 1* 9. Inset, a schematic of the
lattice with a 2 * 3 configuration of CRUs. The darker circle indicates the CRU at the origin. In an additive system (A) simultaneous firing of multiple
CRUs (b–e) do not add significantly to the Ca2! concentration from a single CRU (a). A buffered system exhibits superadditivity, and the Ca2! distribution
due to firing of multiple CRUs is remarkably different. Note that there is little difference due to firing of 7 or 9 CRUs (c, e). (C) The temporal behavior
of the Ca2! concentration at x $ 2, y $ 0 in a buffered system. Simulation parameters: ISR $ 20 pA, Topen $ 10 ms.
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shape the evolution of waves. The second reason is prag-
matic. A typical simulation takes about 24 hrs of computa-
tion time, so we rely on our predictive tools to guide us in
making judicious parameter choices. The input data for the
probabilistic equations require only about 1 hr to compute.

Basic steps in propagating waves on discrete
rectangular lattices

Figure 4 shows how a Ca2! wave propagates on a discrete
rectangular lattice. The 11 images are of the Ca2! concen-
tration distribution in the x–y plane at t $ 0, 26, 29, 34, 38,
55, 65, 75, 85, 95, and 105 ms (left to right, top to bottom).
The white dots are the locations of the CRUs spaced 2 !m
apart longitudinally and 0.8 !m apart transversely. The
white curves show where C is between 10 !M and 20 !M.
The origin is at the lower left corner. At t $ 0, C(x, y, 0) $
0.1 !M except on the 4 * 4 !m2 square at the origin where
C $ 30 !M. Note that the buffers are in equilibrium with
the Ca2! everywhere. We pick up the progress of the wave
at t $ 26 ms where we see five firing CRUs at x $ 6 !m;

the CRU at y $ 2.4 !m fired at t $ 15 ms and is no longer
releasing Ca2!. At this time there is a “wall” of high Ca2!
concentration (white curve) bearing down on the CRUs at
x $ 8 !m. The next three images at t $ 29, 34, and 38 ms
illustrate the rapid activation of six contiguous CRUs along
x $ 8 !m. This rapid activation is shown also in the 12th
image, which is a transverse linescan through x $ 8 !m.
This linescan image is oriented with the y-coordinate in the
same direction as the x–y images, so there is a point-to-point
correspondence with the x–y image. The six contiguous
CRUs fire in rapid succession, giving rise to the nearly flat
apex of the transverse wave.
In the 5th image (t $ 38 ms), there is the wall of high

Ca2! concentration approaching the CRUs at x $ 10 !m. In
time, CRUs at x $ 10 !m will fire, sending out another wall
of Ca2! to x $ 12 !m, thus regenerating the cycle of wave
propagation.
The sequence of events just described—firing of 5–7

contiguous CRUs in rapid succession, generating a wall of
high Ca2! that, in turn, triggers CRU firing at the next
sarcomere—is the basic pattern for Ca2! wave propagation

FIGURE 4 Wave propagation on rectangular lattices. These snapshots of Ca2! distribution in the x–y plane were taken at 0, 26, 29, 34, 38, 55, 65, 75,
85, 95, and 105 ms (left to right, top to bottom). The white dots are the locations of the CRUs spaced 2 !m apart longitudinally and 0.8 !m apart
transversely. The white curves show where 10 !M # C # 20 !M. The simulation starts with C set to 30 !M on 0 # x # 4 !m, 0 # y # 4 !m (image
1); buffers (endogenous and fluo-3) are in equilibrium with Ca2!. Elsewhere, all chemical species are set to their baseline values. Images 2–5 illustrate how
Ca2! waves propagate on rectangular lattices. Image 2 shows a “wall” of high Ca2! concentration (white curve) bearing down on the column of CRUs
at x $ 8 !m. This wall of Ca2! causes the nearly simultaneous activation of about 7 CRUs (images 3–5). The sequence of firings along x $ 8 is shown
in the transverse linescan (image 12, time flows from left to right). The near simultaneous firing of"6 CRUs shows up as the flat part of the linescan image.
Subsequently, CRUs along y fire sequentially at nearly regular intervals, seen as the sloping part of the linescan image. About 5–7 contiguous CRUs are
needed to raise the Ca2! concentration high enough to trigger CRUs 2 !m away at the next column to sustain the wave as was seen in the previous figure.
Note spontaneous sparks occur in images 6, 10, and 11. “Jumping” of the wave from one column to the next is not evident in these static images; this
solution and others in the form of MPEG movies can be downloaded from our ftp site ftp://ntcv.umaryland.edu/pub/izu/. (The readme.txt file gives a guide
to the movies.) The scale bar in panel 12 represents 50 ms.
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on lattices. To generate enough Ca2! to saturate the buffers
and to sufficiently raise the Ca2! concentration at the next
sarcomere, about 5–7 CRUs must fire in rapid succession as
was seen in Fig. 3 C, illustrating superadditivity.
The rapid firing of 5–7 contiguous CRUs on a z-line

shows up as the flat apex in a transverse linescan image
(image 12, left-hand side). However, after this initial flurry
of firings, subsequent firings on that z-line occur in a
step-by-step fashion at regular intervals as shown in the
sloping edge of the linescan image.
Images 6–11 are taken at 10-ms intervals and illustrate

the steady progression of the wave. Two spontaneous sparks
are seen in image 6 (t $ 55 ms) at (10, 9.6) (near the center)
and at (18, 14.4). The elliptical diffusion of Ca2! is clearly
seen in the (10, 9.6) spark. These sparks do not trigger firing
from adjacent sarcomeres 2 !m away. In the 10th (t $ 95
ms) image image a spark occurs at (18, 13.6) and, in the
11th (t $ 105 ms) image, sparks occur at (18, 15.2) and
(18, 12.8). The sparks at (18, 13.6), (18, 15.2), and
(18, 12.8) were probably triggered by the spark at
(18, 14.4). Using the probabilistic equations in the next
section, we calculate the probability of these CRUs firing to
be "0.5. In contrast, the probability of firing of a CRU far
from the (18, 13.6) spark, say at (12, 14.4), during 55# t #
105 is only 0.014. Animated images of the simulation
shown in Fig. 4 and other simulations, in the form of MPEG
movies, can be downloaded from our ftp site ftp://ntcv.u-
maryland.edu/pub/izu/.

Wave statistics

Earlier deterministic models for Ca2! wave propagation
(Backx et al., 1989; Keizer et al., 1998; Lukyanenko et al.,
1999) assumed that the CRU fires as soon as the local Ca2!
concentration exceeds the threshold C*. In a stochastic
system, this would be true if n were so large that P(C, K, n)
would be nearly a step function with C* - K. Because n "
2, however, P(C, K, n) has a shallow slope, so there is a
distribution of times before a CRU fires. Thus exactly when
a CRU will fire cannot be known, so, instead, we calculate
the probability of firing within some time interval.
If the Ca2! concentration at a CRU is fixed at C! , then the

waiting time before it fires follows an exponential distribu-
tion and the mean waiting time (MWT) before firing is
1/P(C! , K, n). This standard result is not applicable to study-
ing waves because the Ca2! concentration at a CRU varies
with time. In Appendix B, we derive, assuming time-vary-
ing P(C, K, n), expressions for p(x, y, t # $), the probability
that a CRU at (x, y) does not fire in time t # $ (Eq. B3);
#(x, y, t), the waiting time distribution (Eqs. B5 and B8); the
MWT before the CRU fires (Eq. B6), and P(X % 1, t # $),
the probability that at least one CRU has fired in time t #
$ (Eq. B7).

Effect of ISR and Topen on waves

We apply these formulas to study the effects ISR and Topen
have on waves. First, we approximate the Ca2! distribution
in a wave whose front is at column i $ 0 by two methods.
In method a we simultaneously fire two columns of seven
contiguous CRUs (y $ !y j, j $ %3, . . . , 3, x $ %!x and
x $ 0); in method b we fire one column of seven CRUs
(y $ !y j, j $ %3, . . . , x $ 0) and set the initial Ca2! (and
the other chemical species) to a high value, comparable to
that seen in waves, in the region x # 0, %3!y # y # 3!y.
The choice of seven CRUs comes from observing, in Ca2!
waves, that "5–7 CRUs must fire on column i before any
CRU on column i ! 1 fires. In method b, the choice of the
initial Ca2! concentration is arbitrary, but the range is
guided by results from some simulations. The distribution in
a was chosen to approximate the distribution in a nascent
wave, whereas that in b, a well-developed wave. Needless to
say, both methods approximate the concentrations in a wave
very crudely, but they nevertheless provide useful guides in
choosing model parameters for simulations. The time cost
of these rough calculations, "1–2 hrs, is well warranted
before carrying out an "24–36-hr simulation.
Method a underestimates the velocity because the Ca2!

concentration gradient on x # 0 is greater than that in a wave,
so less Ca2! flows to the CRUs on column i ! 1. Method b
overestimates the velocity because, in a wave, the CRUs on the
wave front fire in rapid succession but not simultaneously as
assumed in method b. Thus, the velocity from the simulation is
bracketed by the estimates from the two methods.
Each CRU at (x $ 2, y $ 0.8j), j $ %3, %2, . . . , 2, 3

sees a changing Ca2! concentration similar to that in curve
d in Fig. 3 C. Knowing C(x $ 2, y $ 0.8j, t), we then
calculate the probability that at least one CRU at x $ 2 will
fire within $ ms, P(X % 1, t , $). The waiting time distri-
bution (WTD) # before a CRU at x $ 2 fires is then used to
calculate the MWT for firing.
Figure 5 A shows the probability of at least one firing and

5 B the waiting time distributions for different combinations
of (ISR, Topen). The curves labeled with circles, squares, and
down-triangles derive from ISR $ 20 pA and Topen $ 8, 7,
and 5 ms, respectively. The curve with up-triangles comes
from (15, 8). The a and b sublabels signify the method used
to generate the concentration distributions. These curves
illustrate the striking sensitivity of P(X % 1, t # $) and the
WTDs to ISR and Topen.
First consider the case where ISR $ 20 pA and Topen $ 8

ms (circles). Using the distribution of method a, we see (Aa)
the probability of firing starts rising starting "10 ms after
the channels at x $ 0 and x $ %2 have fired, and, by 20 ms,
it is almost certain that at least one CRU at x $ 2 has fired.
The WTD # (Ba) also rises rapidly, peaks at 15 ms, then
declines rapidly. The decline of # to almost zero beyond
"25 ms means that the probability of needing to wait more
than 25 ms before a CRU fires is virtually zero. The MWT
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for this distribution is 15.89 . 4.47 ms, from which we
estimate the longitudinal velocity by ,x $ !x/MWT $ 2
!m/15.89 ms $ 126 !m/s.
The parallel calculations of P(X % 1, t # $) and # using

the distribution of method b are given in Ab and Bb. The
CRUs at x$ 2 see a higher Ca2! concentration than in method
a because the shallower concentration gradient on x# 0 causes
the large amount of Ca2! in the reservoir (x# 0,
%3!y # y#3!y) and Ca2! released from the CRUs to flow
mostly rightward. Not surprisingly then, P(X % 1, t # $)
approaches 1 more quickly, and # is sharper for method b. The
MWT is now 10.06 . 1.91 ms and the estimated velocity is
199 !m/s. The wave velocity measured in a simulated wave
(see below) with these parameters was 155 !m/s, which is
between the estimates from methods a and b.
Firing properties change dramatically when Topen de-

creases by just 3 ms from 8 ms to 5 ms (down triangles).
Whereas the probability of CRU firing at x $ 2 was almost
1 at t $ 20 ms for Topen $ 8 ms, when Topen $ 5 ms, the
probability of firing does not reach 0.5 until 80 ms using
method a or 37 ms using method b. Note the waiting time
distributions are very broad with a barely perceptible peak

at 22 ms (Bb) and 47 ms (Ab). The MWTs are 69.03 .
35.40 ms (a) and 40.63 . 30.22 ms (b). The broad waiting
time distributions mean that a CRU at x $ 2 will have an
equally low chance of firing at almost any time after "10
ms after CRUs at x $ %2 and x $ 0 have fired.
We do not expect waves to propagate with perfect regu-

larity in a stochastic system, but there must be a modicum
of predictability. The broadening of the waiting time distri-
bution curves signals loss of predictability. For the param-
eter pairs (20, 5) and (15, 8), down- and up-triangles, the
waiting time distributions are so broad that they preclude a
reasonable estimate of the time a wave front will reach the
next column of CRUs. Hence these calculations indicate
that Ca2! waves are unlikely to occur with these parameter
combinations. These predictions were confirmed by simu-
lations started with method a.

Physiological meaning of the waiting
time distributions

We get a clearer understanding of the physiological mean-
ing of the WTDs by examining them in conjunction with

FIGURE 5 Probability of firing (Aa, Ab) and waiting time distributions (Ba, Bb) for different combinations of (ISR, Topen). The sublabels (a,b) refer to
the method the Ca2! concentration in the wave was approximated (see text). Circles, (ISR, Topen) $ (20, 8); squares, (20, 7); up-triangle, (15, 8);
down-triangle, (20, 5).
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linescan images of Ca2! waves shown in Fig. 6. The three
waves were produced with parameter combinations (ISR $
20 pA, Topen $ 8 ms) (panel Aa), (20, 5) [panel Ba], and
(5, 32) (panel Ca). These linescans are oriented with time
flowing from left to right, and the linescan was along the
longitudinal axis at y $ 2.4 !m. In Panel A the wave

produces a sharp edge in the linescan image whose slope
(measured with respect to the horizontal) equals the wave
velocity of 155 !m/s. The sharpness of the edge stems from
the almost perfectly regular firing intervals between CRUs
shown in the accompanying time plot of the Ca2! concen-
tration at the release sites at x $ 6, 8, 10, . . . , 18 !m (Fig.

FIGURE 6 Regularity of wave propagation for different (ISR, Topen). Local variations in the wave velocity are reflected in the longitudinal linescan images
Aa (ISR $ 20, Topen $ 8), Ba (20, 5), and Ca (5, 32). In Aa, the wave front progresses from z-line to z-line (bright spots showing CRU firing) at a regular
pace, giving rise to a sharp edge in the linescan image. Ab is the corresponding time plot of log(C(x, y $ 2.4, t)) for x $ 6, 8, 10, . . . , 16 !m showing
the wave moving with almost deterministic precision despite the firing of CRUs being a random variable. The mean time between firings is 14.1 ms with
standard deviation (SD) of only 2.1 ms. This great regularity is predicted from the very narrow waiting time distribution (WTD), curve A, panel D,
calculated using an approximation of the Ca2! distribution in a wave using method b (see text for explanation). Ba shows a ragged wave indicating very
irregular wave propagation caused by reducing Topen by just 3 ms to 5 ms. The time plot of log(C(x, y $ 2.4, t)) (Bb) shows not only large variability in
the time of CRU firing but also the local Ca2! concentration at the time of firing (circles). Note that the CRU at x $ 12 sees a Ca2! of 3 !M for "30
ms but does not fire until C - 10 !M. The mean time between firings is 41.6 ms with a large SD of 29.1 ms. The WTD (curve B, panel D) is also very
broad; its mean is 40.6 ms and SD is 30.2 ms. The parameters for wave C were chosen so that the total Ca2! released, ISR * Topen, was the same as in
A. Although the parameters for A and C appear vastly different, the waves are more similar to each other than the wave in B. Linescans A and C are scaled
between 0.1 and 350 !M and are about equally bright because the total Ca2! released is identical; linescan B is scaled between 0.1 and 175 !M and is
considerably dimmer than A and C. C’s wave velocity (81 !m/s) is about half of A’s (155 !m/s) reflecting the slower rate of release (ISR), but the wave
front is quite sharp. The mean time between firing (from the time plot Cb) is 24.6 ms with SD $ 8.4 ms; the WTD has mean of 23.3 ms and SD of 4.6 ms.
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6 Ab). The mean time between firings is 14.1 ms with a
standard deviation (SD) of 2.1 ms. In this and remaining
time plots, the Ca2! concentration rises rapidly in the first
few milliseconds after the CRU fires, then more slowly as
diffusion balances influx. The sudden drop occurs when the
CRU closes.
In contrast to this wave that propagates with almost

deterministic precision, the wave in Fig. 6 Ba propagates
unpredictably. The unpredictable timing of firing of succes-
sive CRUs is seen in the time plot (Fig. 6 Bb) and gives the
linescan image a ragged edge. The stochastic nature of CRU
firing is clearly evident in the time plot. Note that the Ca2!
concentration at which the CRU fires (circles) varies widely
from 1.3 to 15.3 !M. The CRU at x $ 12 !m (4th curve
from left) sees a Ca2! concentration of "2 !M for "30 ms
without firing, although CRUs at x $ 6, 8, and 10 !m had
fired at this concentration. In fact, the CRUs at x $ 12 and 16
!m do not fire until the Ca2! concentration is raised by the
firing of neighboring CRUs (off of the linescan) to "10 !M.
The widely differing firing patterns of waves in Aa and

Ba are reflected in their respective WTDs shown in Fig. 5
and reproduced in Fig. 6 D. The nearly fixed firing intervals
in A can be anticipated from the narrow WTD, which has a
SD of 1.91 ms, close to the measured dispersion of firing
intervals in the wave. The mean of this WTD (i.e., the
MWT) is 10.9 ms, somewhat less than the mean firing
interval. As mentioned earlier, the MWT calculated using
method b overestimates the wave speed.
The WTD for (20, 5) (curve B) is very broad; its mean is

40.6 ms with a SD of 30.2 ms. The large dispersion in the
WTD is the reason for the large variability in firing intervals
for the wave in Panel B. The MWT and SD for WTD (B) are
close to the mean firing interval measured from time plot Bb
of 41.6 ms with SD of 29.1 ms.

Total Ca2! released is a strong determinant of
wave properties

The waves in panels A, B, and C of Fig. 6 were generated
with (ISR, Topen) of (20, 8), (20, 5), and (5, 32), respectively.
Although the parameters are similar for A and B, the waves
are quite different. In contrast, (20, 8) and (5, 32) are dis-
similar yet the waves they engender are similar in terms of
their regularity. What is common to both (20, 8) and (5, 32)
parameter sets is the total amount of Ca2! released per CRU
(ISR * Topen) is the same. The mean and SD for the
(5, 32)-WTD, curve C, are 23.33 and 4.55; the mean firing
interval measured from the time plots in Fig. 6 Cb is 24.56
ms and the SD is 8.44 ms. We expect that the MWT for
(5, 32) would be longer than that for (20, 8) simply because
the rate of release is 4 times smaller. Surprisingly, however,
the MWT is only about twice as long, not four times longer
(24.6 versus 14.1). In contrast, the MWT for (20, 5) is about
threefold larger (41.6 versus 14.1) than the MWT for
(20, 8).

These results show that there is no simple relationship
between the rate of release ISR, the open time, and the wave
velocity. However, the total Ca2! released, ISR * Topen, is
a fairly good predictor of the SD of the WTD, hence a fairly
good predictor of the sharpness of the wave front. Two
waves having equal ISR * Topen but different ISR, would
appear about equally sharp in linescan images but would
have different velocities. In actual linescan images, we do
not know ISR * Topen, but, because it equals the total Ca2!
released, cells with equal ISR * Topen would be about
equally bright (compare time plots in Fig. 6, Ab and Cb).
“Equally bright” must be interpreted cautiously, however,
when using a nonratiometric dye such as fluo-4.

Initiation of waves

The distinction between wave propagation and wave initi-
ation is essential for understanding the stability of the Ca2!
control system in muscle. For (ISR $ 20, Topen $ 5) the
MWT before activating CRUs 2 !m away is 69 . 35 ms
when the Ca2! distribution is set up using method a (Fig.
5 Ba, down triangles). Because of the large MWT and large
SD, we guessed that a wave would not be initiated with
these parameters and initial conditions. This guess was, in
fact, correct. We carried out a simulation using the same
initial conditions as method a, firing two columns of seven
CRUs that raised the Ca2! concentration locally to high
levels, but not enough Ca2! was released to trigger CRU
release on adjacent sarcomeres. However, raising the Ca2!
concentration to 30 !M in a 4 * 4 !m region was enough
to trigger the wave shown in Fig. 6 B.
These examples illustrate the inherent stability of dis-

cretely spaced CRUs to even fairly large increases in Ca2!
concentration that might arise from injury or the random
firing of CRUs. Large enough perturbations can trigger
waves, however.
To assess whether a given perturbation, i.e., nonequilib-

rium Ca2! distribution, can trigger a wave, we calculate the
WTD and P(X % 1, t #$) for that perturbation. Fig. 6 D
shows the WTD for CRU firing at x $ 6 !m for the
standard initial conditions used to start wave calculations,
that is, C(x, y, 0)$ 30 !M on 0# x # 4, 0# y # 4 (dashed
line). Note, in this region, that the buffers are in equilibrium
with Ca2!, so there is a large reservoir of Ca2!. This WTD
has a mean of 18.02 . 5.43 ms. Given the short MWT and
low SD, we expect that this IC will initiate firing of CRUs
at x $ 6. Initiation does occur and, in Fig. 6 B, the CRU at
x $ 6 (3rd spark from the left) fires on schedule at t $ 16
ms. The reason this perturbation (30 !M on a 4 * 4 !m2
region) could initiate a wave but the perturbation of method
a (two columns of seven firing CRUs) could not is simply
related to the amount of Ca2! available to diffuse. In the
former case, the large Ca2! reservoir can raise the Ca2!
concentration at x $ 6 !m rapidly and sustain the high
concentration; in the latter case, the Ca2! released is rapidly
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taken up by buffers, so free Ca2! concentration at x $ 6 !m
is low.
Initiating CRU firing on an adjacent sarcomere does not

guarantee wave propagation, however. The Ca2! distribu-
tion set up by method b serves to assess whether a given set
of parameters can support a wave. The WTD using method
b for (ISR $ 20, Topen $ 5), which we have seen before, is
shown again in Fig. 6 D (B). The large MWT and SD
(40.6 . 30.2 ms) for this WTD make it ambiguous whether
a wave might be supported. This ambiguity is reflected in
the wave itself as we see in Fig. 6 B, where there are times
when the wave “stalls” and might seem to cease propagating
(e.g., at x $ 12 !m and 16 !m).
In summary, even if a given set of parameters could

support wave propagation, not every disturbance initiates a
wave. To initiate a wave, the disturbance must raise the
Ca2! concentration sufficiently high over a sufficiently
large region. The magnitude and spatial extent of the needed
perturbation depends naturally on the parameters and can be
estimated from the WTD.

Effect of CRU Ca2! sensitivity

Up to now, we have fixed the CRUs’ Ca2! sensitivity K to
15 !M and focused on the effects that ISR and Topen have on
wave behavior. K is affected by the Mg2! concentration
(Rousseau and Meissner, 1989), drugs such as caffeine
(Rousseau and Meissner, 1989) and tetracaine (Györke et
al., 1997), and SR Ca2! loading (Rousseau and Meissner,
1989; Györke and Györke, 1998). Figure 7 shows the pre-
dicted (curves) and actual (open squares) velocity depen-
dence of ,x on K for ISR $ 20 pA and Topen $ 7 ms. The
lower and upper curves were calculated from the WTD

generated using methods a and b, respectively. The upper
and lower boundaries decline almost linearly with K. Sim-
ilar calculations using ISR $ 10, Topen $ 10 and ISR $ 20,
Topen $ 8 show also the linear decline of the velocity
boundaries, but the slopes differ for each pair of (ISR, Topen).

Increasing sensitivity and spontaneous waves

Halving K from 15 !M to 7.5 !M doubles the Ca2!
sensitivity of the CRU and triples the baseline spark rate, P.
Figure 8 shows snapshots of the Ca2! distribution for this
high-sensitivity condition. This simulation was started with
all chemical species in equilibrium so all sparks arise spon-
taneously. The first three panels (left to right) were taken at
t $ 21, 27, and 35 ms, and the arrows point to CRUs at
(2, 4), (2, 3.2), and (2, 2.4), respectively. These three con-
tiguous CRUs in the transverse direction fire sequentially
and can be seen more clearly in the transverse linescan
along x $ 2 shown in the 12th panel. This sequential firing
of sparks in the transverse direction is similar to those
observed by Parker et al. (1996) in ventricular cells. Note
that not all sparks trigger firing of contiguous CRUs. For
example, in panel 2, the spark at (12, 9.6) (near the center)
does not trigger any other spark.
Because of the high spontaneous spark rate, it is not

surprising to see a wave arise spontaneously. The birth of a
wave is seen in panels 4–7. At t $ 45 ms, the CRU at
(16, 9.6) (panel 4, arrow) has fired and will sequentially
trigger firing of contiguous CRUs on x $ 16. By t $ 61 ms
(panel 5), CRUs at (16, 9.6) and (16, 8.8) have fired and
turned off and the CRU at (16, 8) is firing. These sparks on
x $ 16 have raised the Ca2! concentration at (14, 9.6)
(arrow) only slightly above the baseline, so the firing of the
CRU at (14, 9.6) is pure happenstance. If the CRUs on x $
16 have not fired, the fate of CRUs on x $ 14 might be
similar to those we have seen: CRU (14, 9.6) might be an
isolated spark or it might trigger one or two other sparks.
But the firing of CRUs on x $ 16 contribute Ca2! to sites

on x $ 14 and also limit the diffusion of Ca2! away from
site (14, 9.6). Thus the probability of firing of adjacent
CRUs at (14, 9.6 . 0.8) is slightly higher than the CRU at
(2, 3.2) following the CRU (2, 4) firing. Each additional
firing of CRUs on x $ 16 leads to an ever increasing
likelihood of CRU firing on x $ 14 and vice versa, thus
stabilizing the nascent wave. After a certain number of
CRUs have fired, the probability of the nascent wave dying
is virtually zero. This is the probabilistic equivalent of the
“critical curvature” a wave must have before it can propa-
gate (Wussling et al., 1997).

Effect of transverse lattice spacing

What effect would reducing the transverse CRU spacing
from !y $ 0.8 to 0.4 !m, keeping !x fixed to 2 !m, have on

FIGURE 7 Longitudinal velocity dependence on K. Curves give the
lower and upper ,x estimates using methods a and b, respectively. Squares
give the actual velocity from wave simulations. Inset shows velocity
dependence as K approaches the baseline Ca2! concentration of 100 nM.
Computation parameters: ISR $ 20 pA, Topen $ 7 ms.
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the ratio of ,x to ,y? When !y $ 0.8 !m, ,x/,y - 1.3; for
the wave in Fig. 4, ,x/,y $ 155 !m/s/124 !m/s $ 1.25.
When !y is reduced to 0.4 !m, the distance to the adjacent
CRU in the y-direction is only 1⁄5 of that to the CRU on the
next sarcomere. Thus the shorter distance should compen-
sate for the 2:1 diffusion anisotropy, and we might expect
,x/,y to be less than unity. This expectation is wrong.
Figure 9 shows snapshots of a Ca2! wave propagating on

a lattice with !x $ 2 !m and !y $ 0.4 !m at 37-ms time
intervals starting at t $ 0 ms. As in Fig. 4, the white dots
mark the CRU locations and the white curve shows where
10 !M # C # 20 !M. Contrary to our naive expectation,
the longitudinal velocity is almost twice as large as the
transverse velocity, 120 !m/s versus 67 !m/s. In this sim-
ulation ISR $ 15, Topen $ 6, and K $ 15 !M. Simulations

using (ISR, Topen) $ (10, 10) or (10, 16) gave ,x/,y ratios of
1.7. Thus the change in ellipticity of the Ca2! wave went
opposite to our expectation.
This surprising behavior has its origin in the way waves

propagate on discrete lattices that we outlined earlier. Recall
that, in Fig. 4, about 5–7 contiguous CRUs along a column
(i.e., z-line) were needed to fire to sufficiently saturate the
buffers and raise the Ca2! concentration enough to trigger
firing at the next sarcomere. Thus the rate at which the wave
progressed along the x-direction was intimately linked to the
rate CRUs along the y-direction were triggered. When !y $
0.4 !m the rate the CRUs along y are activated is faster than
when !y $ 0.8 (for the same parameters), but then, so are
the CRUs on adjacent sarcomeres. Thus we do not get an
elliptically shaped wave with major axis in the y-direction.

FIGURE 8 High Ca2! sensitivity (K)
causes spontaneous wave. Snapshots of Ca2!
distribution at 21, 27, 35, 45, 61, 65, 72, 80,
90, 110, and 130 ms showing the spontaneous
appearance of a Ca2! wave. K is 7.5 !M,
twice the usual sensitivity, giving rise to nu-
merous spontaneous sparks. The first three
panels show the sequential firing of three
CRUs at x$ 2 (arrows). A transverse linescan
showing the dye concentration (time flowing
from left to right) at x $ 2 is in panel 12.
Although there are numerous spontaneous
sparks, most do not trigger a wave. The birth
of the wave is seen in panels 5–7. The wave
starts from spontaneous sparks on adjacent
sarcomeres (x $ 14 and 16) occurring at about
the same time at about the same y value ("8).
Scale bar 20 ms and 2 !m, color bar ranges
from 0.1 to 350 !M for Ca2! and 4 to 50 !M
for the Ca-bound dye. Computation parame-
ters: ISR $ 20 pA, Topen $ 7 ms, K $ 7.5 !M.

FIGURE 9 Effect of transverse lattice spacing on
wave propagation. The transverse spacing of CRUs has
been reduced from 0.8 to 0.4 !m. The naive expecta-
tion that the wave will travel faster transversely than
longitudinally when !y is reduced is not borne out as
shown in these Ca2! concentration images. The longi-
tudinal velocity is about twice as large as the transverse
velocity ("120 !m/s versus "67 !m/s). These images
were taken at 37-ms intervals starting at t $ 0. The
longitudinal spacing of CRUs is 2 !m as usual. The
sixth image is the transverse linescan at x $ 6 !m
shows the rapid activation of "15 CRUs (flat part of
the linescan) followed by slower activation further for
larger y; this behavior is similar to that in Fig. 4.
Computation parameters: ISR $ 15 pA, Topen $ 6 ms,
K $ 15 !M.
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The transverse linescan (image 6), taken at x $ 6 !m,
shows the rapid activation of "15 CRUs along the y-
direction indicated by the flat apex.

DISCUSSION

Based on newly available information on excitation–con-
traction coupling, we developed and analyzed a mathemat-
ical model that provides a unified framework for under-
standing the relationship between Ca2! sparks and Ca2!
waves. The key elements of this model include the use of
relatively large currents to generate Ca2! sparks, stochastic
triggering of SR Ca2! release, asymmetric distribution of
CRUs, and the anisotropic diffusion of Ca2! and mobile
buffers. Significantly, Ca2! waves produced by our model
mimic the important features of Ca2! waves in experiments
in terms of velocity, pattern of propagation (anisotropy),
and changes in the spontaneous Ca2! spark frequency.
Also, our model is unique in its ability to reproduce these
features using experimentally measured parameter values.

Importance of using large currents

In our initial efforts to model Ca2! waves (Izu et al., 1999),
we assumed that the current through the CRU was "1–2
pA. These small currents generated unrealistic waves that
traveled along the transverse direction where the CRU spac-
ing was 0.8 !m, but not along the longitudinal direction
because the CRU spacing was 2 !m. Moreover, to get
waves to propagate even in the transverse direction, the
CRU Ca2! sensitivity had to be set to K - 500 nM, about
30-fold smaller than measured in planar bilayer studies
(Györke and Györke, 1998) and in permeabilized cells
(Lukyanenko and Györke, 1999).
The failure of the model to generate realistic waves

forced us to reexamine our basic understanding of Ca2!
sparks (Izu et al., 2001), where we estimated that the current
underlying a spark is about 20 pA, about 10 times larger
than the prevailing estimate. Rı́os et al. (1999), using dif-
ferent methods, estimated that the currents underlying
sparks in skeletal muscle are between 15 and 20 pA.
In this paper, we used CRU currents between 10 and 20

pA. With currents of this magnitude, the Ca2! waves appear
realistic, propagating faster longitudinally than transversely
(,x/,y - 1.3–1.7) despite the longer distance between CRUs
along x (!x $ 2 !m) than y (!y $ 0.4–0.8 !m). Such
velocity anisotropy is observed in cardiac cells where ,x/,y
ranges from 1.30 at 17°C to 1.55 at 37°C (Engel et al.,
1994).
Importantly, realistic waves are obtained using Ca2! sen-

sitivity values of K " 15 !M, which is in the range
measured in planar bilayers (Györke and Györke, 1998) and
permeabilized cells (Lukyanenko and Györke, 1999) with
physiological levels of Mg2!. In an earlier model for Ca2!

waves (Keizer and Smith, 1998), where release fluxes cor-
responding to currents of "2 pA were used, Ke, which
roughly corresponds to the Ca2! sensitivity, had to be
reduced 5000-fold to achieve “stochastic excitability” at a
Ca2! concentration of 100 nM. Keizer and Smith also used
a maximum pump rate of 2 !M/s, which is 100 times
smaller than the experimentally measured value (Balke et
al., 1994). The small maximum pump rate might have been
necessary to allow wave propagation in their model.
Lukyanenko et al. (1999), using a derivative of the Keizer

and Smith model, also found that, for wave propagation to
occur when CRUs were separated by 2 !m, the threshold
for release had to be set to low (#1.5 !M) levels.
Although we do not use a release flux (units of !M/s) but

a molar flux (pmol/!m/ms), it is of interest to compute a
release flux from our model parameters to compare with
values determined by others. As described in Methods, we
assumed 1 CRU/z-line and use a volume commensurate
with the confocal scan region (1 !m * 0.5 !m) and
sarcomere length (2 !m). Thus we assume 2 CRU/!m3.
Assuming each CRU carries 20 pA, then the release flux
equals 200 !M/ms. This value is "30–100 times larger
than previous estimates for a cardiac spark (Blatter et al.,
1997; Lukyanenko et al., 1998). Our release flux value is,
however, fairly close to the "350 !M/ms recently calcu-
lated by Rı́os et al. (1999). It is hard to reconcile Ca2! wave
propagation with CRUs having relatively low Ca2! sensi-
tivity of "15 !M when using the earlier release flux esti-
mates of "2–7 !M/ms.

Constraints imposed by stochastic models

Because spontaneous sparks appear to be the product of
random opening and closing of RyRs, models linking sparks
to waves must have stochastic control of the opening and
closing of RyRs. This is important because deterministic
and stochastic systems can behave very differently when the
Ca2! sensitivity of the CRUs (K) is high. In particular, in a
deterministic system, the baseline Ca2! concentration (C0)
can be brought arbitrarily close to the firing threshold with-
out triggering a wave. In our stochastic model, if K is
reduced to near C0, then the number of spontaneous sparks
increases rapidly. In Fig. 8, we see numerous spontaneous
sparks that coalesce into a wave even when K $ 7.5 !M,,
C0 $ 0.1 !M. If K - C0, the spontaneous spark rate would
be so high (up to Pmax) that the multitude of spontaneous
sparks would be like raindrops on a pond precluding an
organized wave, i.e., one starting at one end of the cell that
progresses to the other end. It is likely that if Lukyanenko et
al. (1999) had used a stochastic instead of a deterministic
model for triggering Ca2! release, then, for the threshold
used that allowed wave propagation (#1.5 !M), the number
of spontaneous sparks would be so large that well organized
waves would not have formed.
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Thus stochastic systems imposes the constraint K ,, C0
for organized waves to occur. This constraint is important
when we consider factors that affect wave velocity.

Determinants of wave velocity

The wave velocity is affected by the rate of Ca2! release,
ISR, the total amount of Ca2! released, ISR * Topen, and the
Ca2! sensitivity of the CRU, K. The Ca2! sensitivity of
RyRs is affected by the Mg2! concentration (Rousseau and
Meissner, 1989; Györke and Györke, 1998), SR loading
(Györke and Györke, 1998), and drugs such as caffeine
(Rousseau and Meissner, 1989) and tetracaine (Györke et
al., 1997). Figure 7 shows the estimated dependence of the
longitudinal wave velocity ,x on K. As expected, increasing
the Ca2! sensitivity (decreasing K) increases the wave
velocity. In fact, such a velocity increase has been observed
in the presence of low doses of caffeine (Lukyanenko et al.,
1999).
The main graph of Fig. 7 shows the estimated bounds of

,x declining roughly linearly with K. However, the inset
shows that, as K decreases to near C0 (0.1 !M) the wave
velocity rises sharply; for K $ 0.3 !M, the estimated
velocity - 1600 !m/s. ter Keurs and co-workers (Miura et
al., 1999) have measured very high velocity ("1000–2000
!m/s) Ca2! waves in intact trabeculae that increased (to
"6000 !m/s) in the presence of caffeine. They ascribe the
changes in velocity to changes in cellular loading and open
probability of CRUs. The sharp rise of ,x as K3 C0 would
be in accord with their explanation, but we find it a chal-
lenge to explain such high wave velocities within the con-
text of our stochastic model because the number of sponta-
neous sparks would be so great that no well-organized wave
would emerge.
An unexpected finding of this study was that the “local”

wave velocity was strongly affected by the total Ca2!
released, ISR * Topen. The local or instantaneous wave
velocity is the distance between two CRUs (!x $ 2 !m)
divided by the time interval between their firing. Large
variations in the local wave velocity are seen as a ragged
wave front in linescan images (Fig. 6 B) and were also noted
by Cheng et al. (1996) in rat ventricular myocytes. Large
variations in the wave speed reflect the broad waiting-time
distribution that arises when total Ca2! released is low
(ISR * Topen $ 20 pA* 5 ms$ 100 fC) Fig. 6 D, curve B).
Figure 6, A and C, show two waves having different

velocities because the underlying currents are different (20
pA and 5 pA) yet their wave fronts are about equally sharp
because Topen was adjusted to make ISR * Topen equal in
both cases (160 fC). The waiting time distribution curves
(Fig. 6 D, curves A and C) are shifted because of the
different currents but roughly similar standard deviations.
The two images are of about equal brightness because the
total Ca2! released are the same. Acknowledging the perils
of comparing fluo-4 image brightness, we suggest, as a

rule-of-thumb, that wave images of comparable brightness
will have wave fronts of comparable sharpness. In particu-
lar, bright waves will have sharp wave fronts, and dim
waves will have ragged fronts.

Controlling instability

The paradox of stable cytosolic Ca2! levels in the face of
regenerative SR Ca2! release has been largely resolved by
Stern’s (1992) local control model of Ca2! release and
confirmed experimentally with the discovery of Ca2!
sparks (Cheng et al., 1993). Anatomy (in part) confers
stability: stability is achieved by the separation of CRUs by
about 2 !m longitudinally and about 0.4–0.8 !m in the
plane of the z-line. Ca2! buffers severely restrict the spread
of Ca2! released from a single or few CRUs, where su-
peradditivity effects are minimal, as seen in Fig. 2. Even for
large currents ("20 pA), the maximum Ca2! concentration
2 !m away from a CRU (in the x direction) is less than 300
nM. However, CRUs are spaced more closely in the trans-
verse direction and the Ca2! concentration at the CRU
adjacent to the one that is firing 0.8 !m away can be high.
For example, for a CRU with ISR $ 20 pA and Topen $ 7
ms, the Ca2! concentration 0.8 !m away is 2.9 !M. How-
ever, because K " 15 !M, the probability that a neighbor-
ing CRU will fire within 150 ms is 0.38. Note that, if the
CRU spacing is assumed to be 0.4 !m, the probability of
triggering a neighbor within 150 ms increases only to 0.42
because P! is less. Stability is also enhanced slightly by the
anisotropy favoring diffusion along x over y. If diffusion
were isotropic then the probability of triggering a neighbor
within 150 ms rises to 0.52. Thus stability derives from
spatial separation of CRUs, low Ca2! sensitivity of the
CRUs, Ca2! buffering, and, to a lesser extent, diffusional
anisotropy.
Loss of stability can manifest itself in Ca2! waves. Be-

cause increased SR loading increases both ISR (measured by
the spark amplitude, Cheng et al., 1996; Satoh et al., 1997)
and CRU Ca2! sensitivity (decreases K), it is not surprising
that increasing SR load is perhaps the most common way of
inducing spontaneous waves. As seen in Fig. 8, reducing K
to 7.5 !M caused a spontaneous wave. However, we also
see that not every spontaneous spark generates a wave.
Precisely how many sparks in what configuration is needed
to start a wave is difficult if not impossible to predict. The
simulation in Fig. 8 suggests, however, that 2 sparks on
adjacent z-lines within about 1 lattice step in the y-direction,
firing within a few milliseconds of each other is sufficient to
trigger a wave. The reason why this configuration can
trigger a wave is due, in part, from the shallow concentra-
tion gradient between the releasing sites along x that forces
more Ca2! to flow in the y-direction and activate transverse
neighbors. Each additional firing of CRUs on one z-line
leads to an ever increasing likelihood of CRU firing on the
other z-line and vice versa. Soon, transverse CRUs on the
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neighboring z-lines begin to fire sequentially in lockstep,
generating a stable nascent wave. After a certain number of
CRUs have fired, the probability of the nascent wave dying
spontaneously becomes virtually zero. The minimal spark
configuration that can initiate a stable wave is equivalent to
the critical curvature a wave must have before it can prop-
agate (Wussling et al., 1997).
In ventricular cells, Ca2! waves are believed to be a

pathological manifestation of Ca2! overload. However, in
other cell types such as avian ventricular cells or atrial cells
that do not have t-tubules, Ca2! waves might assume the
function of t-tubules in causing rapid, propagated Ca2!
release throughout the cell. In these cells it would be im-
portant for a state of “controlled instability” to be main-
tained, wherein random Ca2! fluctuations would not trigger
a wave but a large enough Ca2! bolus, representing a useful
signal, would start a wave.

Limitations of the model

One problem is the very slow decline of the Ca2! wave. In
our longest simulation of 300 ms, the Ca-bound dye con-
centration ([Ca-Dye]) had not declined to the baseline level.
We estimate from the maximum pump rate of 200 !M/s and
the amount of Ca2! released that it would take "2000 ms
for [Ca-Dye] to return to baseline. Lukyanenko et al. (1998)
had used a maximum pump rate 10 times larger than ours,
and, using this rate, we calculated that the wave would
decline in about 200 ms.
The slow decline might be due, in part, to the absence of

diffusion in the z-direction because of cylindrical symmetry.
We partially compensated for this by reducing the molar
flux (see Methods). This suggests that the too slow decline
of the wave might be linked to another limitation of the
model—representing the cell as a 2D plane. At the moment,
computational limitations preclude a full 3D simulation.
However, a 2D simulation might not be as inaccurate as it
might first appear. Rapid 3D confocal imaging of Ca2!
waves using a novel Nipkow confocal microscope (Ishida et
al., 1999) shows that there is little variation of the wave in
the z-direction. This amounts to cylindrical symmetry as-
sumed in our 2D model. Thus a 3D simulation would
require CRUs to fire throughout the y–z plane, so would not
solve the problem of the slowly declining wave.
Another limitation of the model is that Topen is fixed for

all CRUs in a particular simulation. We have seen that wave
properties are particularly sensitive to Topen. Even a 1-ms
change can substantially affect the MWT and SD of the
waiting time distribution. In future work we will allow Topen
to be a random variable.
As mentioned in Methods, we used the Smith buffer

model (Smith et al., 1998) instead of the more complex
Harkins buffer model (Harkins et al., 1993) because the
computational burden of using the latter was prohibitive. To
get a sense of how using the Harkins model would affect

wave propagation, we compared the Ca2! concentrations
from the two models at various distances away from a point
source (assuming spherical symmetry, see Izu et al., 2001).
In the Harkins model, protein-bound fluo-3 (PD) can bind
Ca2! and also act as a large reservoir for protein-free fluo-3
(D), which has a higher Ca2! affinity than PD. Thus for the
same concentration of D in the Smith and Harkins buffer
models, there are more Ca2! binding sites in the Harkins
buffer model resulting in a lower maximum Ca2! concen-
tration for the same current. The magnitude of the difference
depends on the distance from the source, r, however. For
both Smith and Harkins buffer models C at r $ 0.4 !m are
almost identical and the probability of triggering a CRU at
this distance is almost 1 within 15 ms. These calculations
used ISR $ 40 pA, Topen $ 5 ms, DCx $ 0.3 !m2/ms, DDx $
0.09 !m2/ms (for Harkins model) or DDx $ 0.02 !m2/ms
(for Smith model). These currents are much larger than used
in the 2D simulations because spherical symmetry is as-
sumed. See Izu et al. (2001) on the effect of symmetry
assumptions. At r $ 2 !m, C rises to "160 nM and "140
nM in the Smith and Harkins models, respectively. Offset-
ting the smaller maximum Ca2! concentration is the faster
rise time in the Harkins model, so, within "50 ms of firing
of the source CRU, the probability of triggering a CRU at
r $ 2 is about the same for both models.
Given these compensating effects in the Harkins model,

we cannot make quantitative predictions of Ca2! wave
properties in the Harkins model without simulations. We
would guess, however, that the wave velocity would be
slower and it would be more difficult to initiate a wave
because there is effectively more exogenous buffer than in
the Smith model.
Insufficient computational power imposes many of the

limits of the model. The most important are the limitation to
2D simulations and the use of a simple Ca2! buffer model.
We are currently writing simulation code to run on a super-
computer (an SGI Origin 2000) that would remove these
limitations. Supercomputer calculations will also allow
much longer simulation times (,, 150 ms) allowing us to
study Ca2! oscillations. Currently, we prevent CRU refiring
(hence oscillations) by setting the refractory period to vir-
tual infinity to avoid complicating the analysis of propaga-
tion of a single Ca2! wave.
The use of a stochastic function that depends algebra-

ically on the local Ca2! concentration (i.e., changing in-
stantly with C), instead of being a dynamical function, is
both a strength and a weakness. Its simplicity allowed us to
calculate probability functions that were extremely useful
for guiding the simulations and provided insights into the
factors that control wave propagation. However, its utter
simplicity might be preventing us from seeing waves that
are self-aborting, as Keizer and Smith (1998) observed in
their simulations. (There are trivially self-aborting waves
that exist for a short time because of high Ca2! concentra-
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tions that are put in as initial conditions.) In our model, after
a wave gets beyond a certain size, it never dies.
In summary, the model presented here provides a unified

framework for studying both Ca2! sparks and Ca2! waves
in cardiac ventricular myocytes. The model generates spon-
taneous Ca2! sparks at rates seen in experiments. The
model also generates realistic Ca2! waves using relatively
low ("15 !M) Ca2! sensitivities for the SR Ca2! release
units.

APPENDIX A

It can be readily verified that the solution to the linear 2D anisotropic
diffusion problem,

&C
&t ' Dx

&2C
&x2 ( Dy

&2C
&y2 , (A1)

satisfying the boundary condition u(x, y, t) 3 0 as x, y 3 & and initial
condition C(x, y, 0) $ M*(x, y) is
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where G is the Green’s function. We model the opening of the CRU with
a source -(t) that has constant value q between 0 # t # T and is zero
otherwise,

-'t( ' qH't( ) qH't ) T(, (A3)

where H is the Heaviside function. The Ca2! distribution in this case is
found by convolving the Green’s function with -. The convolution with the
first term is
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where . $ (x2Dy ! y2Dx)/(DxDy), z $ ./[4(t % s)], and E1 is the
exponential integral. The convolution of the second term of - with G is
obtained similarly, and C(x, y, t) becomes
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where we call Ẽ the “extended exponential integral.”

APPENDIX B

We derive the probability that a CRU at (x, y) will not fire in t # $, p(t #
$), and the waiting time distribution, #($), when the probability of occur-
rence per unit time P(C(x, y, t), K, n) varies with time. When P is constant
and ##1, then the waiting time distribution is the exponential distribution

(see any textbook on probability, e.g., Ross, 1976). We are unaware of a
derivation for # when P is variable.
The probability that we need to wait at least time $ before the channel opens

equals 1 % (probability that no event occurred in t # $). Divide $ up into *t
time segments, $ $ N*t, then the probability that no event occurred is

p't / $( ' '1) P't1(*t'1) P't2(*t( . . . '1) P'tN(*t(,
(B1)

where we use the abbreviated notation P(ti) $ P(C(x, y, ti), K, n) and (i %
1)*t 0 ti 0 i *t. Taking logs

ln'p't / $(( ' !
i

ln'1) P'i(*t( ) %!
i
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The approximation holds provided P(i) ## 1, which means that C(x, y, t)
should be much smaller than K. Letting *t 3 0, gives the key result,

p't / $( ' exp#%&
0

$
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The probability that one has to wait at least $ for an event to occur is
p(t , $) $ 1 % p(t # $). The waiting time distribution # that generates
p(t , $) is defined by

p't 1 $( ' &
%&

$

#'s( ds. (B4)

Differentiating with respect to $ gives
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The mean waiting time $! is

$! ' &
0

&
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Note that, if P(C(x, y, t), K, n) $ P! is constant, then the mean waiting time
reduces to the well-known solution $! $ 1/P! .

Waiting time distribution for N CRUs.

If pi(t # $) is the probability that the ith CRU has not fired in t # $, then
the probability of having to wait at least time $ before at least one of the
N CRUs have fired is

P'X % 1, t / $( ' 1) +
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Differentiating with respect to $ gives
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