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Abstract

Background: Cardiac myocytes experience mechanical stress during each heartbeat. Excessive mechanical stresses under
pathological conditions cause functional and structural remodeling that lead to heart diseases, yet the precise mechanisms
are still incompletely understood. To study the cellular and molecular level mechanotransduction mechanisms, we
developed a new ‘cell-in-gel’ experimental system to exert multiaxial (3-D) stresses on a single myocyte during active
contraction.

Methods: Isolated myocytes are embedded in an elastic hydrogel to simulate the mechanical environment in myocardium
(afterload). When electrically stimulated, the in-gel myocyte contracts while the matrix resists shortening and broadening of
the cell, exerting normal and shear stresses on the cell. Here we provide a mechanical analysis, based on the Eshelby
inclusion problem, of the 3-D strain and stress inside and outside the single myocyte during contraction in an elastic matrix.

Results: (1) The fractional shortening of the myocyte depends on the cell’s geometric dimensions and the relative stiffness
of the cell to the gel. A slender or softer cell has less fractional shortening. A myocyte of typical dimensions embedded in a
gel of similar elastic stiffness can contract only 20% of its load-free value. (2) The longitudinal stress inside the cell is about
15 times the transverse stress level. (3) The traction on the cell surface is highly non-uniform, with a maximum near its ends,
showing ‘hot spots’ at the location of intercalated disks. (4) The mechanical energy expenditure of the myocyte increases
with the matrix stiffness in a monotonic and nonlinear manner.

Conclusion: Our mechanical analyses provide analytic solutions that readily lend themselves to parametric studies. The
resulting 3-D mapping of the strain and stress states serve to analyze and interpret ongoing cell-in-gel experiments, and the
mathematical model provides an essential tool to decipher and quantify mechanotransduction mechanisms in cardiac
myocytes.
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Introduction

Cardiac muscle contraction generates mechanical force to

pump blood, so the muscle cell experiences mechanical stress

during each heartbeat. Excessive mechanical stress associated with

pathological conditions, such as hypertension, volume overload,

infarction, and asynchronous contraction, can result in cardiac

remodeling and heart disease development [1]. Although the link

between mechanical stress and cardiac remodeling is well known,

the cellular and molecular mechanisms that transduce mechanical

stress in myocytes remain incompletely understood.

Previously, studies on cardiac excitation-contraction mecha-

nisms were mostly conducted using myocytes under load-free

conditions. Investigation of the mechanotransduction mechanisms

has been hindered by lack of techniques to control the mechanical

load at single cell level, especially in the case of live adult cardiac

myocytes. Pioneering studies developed techniques to apply

longitudinal stretch to the single cell. Kohl and colleagues [2]

used carbon fibers attached to the cell’s opposite ends to control

force and strain, and explored the stress-strain relationship under

various preloads. Petroff et al. [3] and Prosser et al. [4] found that

stretching myocytes caused spontaneous Ca2z sparks and waves.

These and other studies provided exciting new research avenues to

understand and quantify the significant impact of the preload on

the myocytes.

Precisely how mechanical stress in 3-dimensional (3-D) tissue

affects the myocyte is still unknown. Under physiological

conditions, the myocyte undergoes contraction and relaxation in

synchrony with surrounding cells to pump blood against the

pressure imposed by circulatory resistance (the afterload). In

addition, under pathological conditions, such as infarction and

asynchronous contraction (i.e. arrhythmias, fibrillation), a myocyte
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may contract asynchronously against its neighbors and experience

more severe and complex multiaxial mechanical stresses imposed

by the surrounding myocardium.

To investigate how multiaxial mechanical stress may affect the

myocytes, we developed a cell-in-gel system by embedding live

myocytes in a 3-D elastic hydrogel matrix. The gel is made of poly

vinyl alcohol (PVA) and tetravalent boronate-PEG crosslinker [5].

The cell surface is adhered to the gel by crosslinking the hydroxyl

groups in the extracellular matrix. When electrically stimulated,

the in-gel myocyte contracts against the elastic matrix, and the

matrix resists shortening and broadening of the cell during

contraction, exerting multiaxial mechanical stress on the cell.

Along with the myocyte, micro-beads are embedded in the gel,

and confocal imaging can be used to measure myocyte dimen-

sional changes and micro-bead displacements as the cell contracts

(see Fig. 1). While it is extremely difficult to exactly simulate the

various in vivo conditions, the impact of mechanical stresses on

single myocytes can be studied using the cell-in-gel system in a

controlled way. The Young’s modulus of the gel is adjustable by

the ratio of PVA and crosslinker concentrations, so the gel stiffness

can be changed/tuned to approximate a range of afterload

conditions in myocardium.

In this article, we provide a 3-D mechanical analysis of the

single myocyte contraction in-gel. The purpose is to provide a

quantitative tool to guide, analyze and interpret ongoing cell-in-gel

experiments, which are ultimately aimed at deciphering the

cellular and molecular mechanisms of mechano-transduction in

the beating heart. Those experiments are generating a large body

of data, and the results will be reported elsewhere. Here, we focus

on the mathematical model that provides a foundational analysis

tool to quantify and map the 3-D mechanical fields inside and

outside the myocyte when it contracts within an elastic matrix. The

model provides the interior (cell) and exterior (matrix) displace-

ment fields that can be directly compared and calibrated to

experimental imaging measurements in terms of fractional

shortening of the myocyte and micro-bead displacements in the

matrix. With knowledge of the gel stiffness, the model can be used

to calculate the multiaxial stress state inside the cell, the traction

distribution on the cell surface (adjacent to chemotransduction

sensors), the stress and strain distributions in the gel (if of interest),

and the elastic energy expended by the cell. The remainder of this

article provides the theoretical development of the model, a

parameter study to highlight general trends and gain insights for

cell-in-gel experiments, and a discussion of implications and

extensions.

Methods

Eshelby Inclusion Theory
Of interest is the boundary value problem of a single beating

cardiomyocyte embedded in an elastic hydrogel of infinite extent

(see Fig. 1). The theory follows closely the classic work of J.D.

Eshelby [6,7] as detailed in [8]. The elasticity problems originally

addressed by Eshelby are based on the inclusion problem where a

subregion (the inclusion) of an infinite, homogeneous, linear elastic

solid undergoes a spontaneous change of shape (transformation

strain). Since the inclusion is constrained by the surrounding

elastic matrix, a residual state of stress is created inside and outside

the inclusion and the inclusion is restrained from achieving its new,
Figure 1. Boundary value problem analyzed. (A) confocal
micrograph of cardiomyocyte, (B) schematic of cell-in-gel experiment
(contracted configuration of cell exaggerated).
doi:10.1371/journal.pone.0075492.g001

Table 1. Nomenclature.

xi spatial coordinates (x1, x2, x3) = (x,y,z)

ui displacement vector components (u1, u2, u3) = (u,v,w)

eij strain tensor components

eij elastic strain tensor components

bij transformation strain tensor components

b�ij eigenstrain tensor components

sij stress tensor components

dij Kronecker delta components

dijkl 4th-order identity tensor components

ti traction vector components

ni unit normal vector components

si unit tangent vector components

VI, VM inclusion, matrix subregions

ai ellipsoid principal axes (a1, a2, a3) = (a,b,c)

Ve ellipsoid volume

S inclusion-matrix interface surface

m,k shear modulus, bulk modulus

Cijkl elasticity modulus tensor components

E ,v Young’s modulus, Poisson’s ratio

w, y potential functions

Bijk, Dijkl displacement, strain tensor operators

S0
ijkl

Eshelby tensor components

l Eshelby parameter

I, Ii, Iij Eshelby integrals

F, E elliptic integrals of 1st & 2nd kind

h, k elliptic integral arguments

Mij, Nij defined intermediate integrals

Q, v defined constants

ak, A, h, G, J, L, C, P defined intermediate functions

g matrix/inclusion modulus ratio

U mechanical strain energy

doi:10.1371/journal.pone.0075492.t001
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stress-free, configuration. Likewise, we envision the cardiac cell

attempting to contract, but its deformation is constrained by the

surrounding gel and only a partial contraction strain is achieved.

Eshelby went on to address the inhomogeneous inclusion problem,

where the elastic moduli of the subregion are different from the

surrounding matrix, by formulating the equivalent inclusion

problem. The usual purpose is to calculate the homogenized

elastic properties of a composite material [9–11], but that is not

our aim here. Rather, we seek the detailed stress and strain fields

arising directly from the cell’s contraction.

Our key assumptions are:

1. The cell is treated as a homogeneous ellipsoidal inclusion.

2. The cell and gel behave as isotropic linearly elastic solids.

3. Displacements, rotations, and strains are small, allowing

linearized kinematics.

4. Cell contraction is isovolumic (isochoric) and occurs uniformly

throughout its volume.

5. The cell membrane is adhered to the gel.

6. Remote boundaries of the gel are load-free.

7. The analysis applies to a single myocyte in gel, without

mechanical interactions with other cells.

Most of these assumptions, except perhaps the first two, are

reasonable considering the cell-in-gel experiments we have mind.

We recognize that typical cardiomyocytes are not ellipsoids (often

irregular brick-like shapes) and the cell and/or gel may not be

linearly elastic (likely somewhat nonlinear and viscoelastic). For

now, however, we are content to accept these assumptions, since

they greatly simplify the analysis and give a useful first-order

analysis that can be extended later if needed.

A fixed Cartesian frame is used with orthonormal base vectors

e1,e2,e3f g aligned to the principal axes of the ellipsoidal inclusion

(cell), and the origin is taken at its centroid. The current procedure

for the cell-in-gel experiment starts by embedding the myocyte in a

resting state in the PVA solution, and then adding the crosslinker

to solidify the gel and adhere it to the cell. Thus, we take the ‘slack’

myocyte adhered to the stress-free gel as our reference configu-

ration. Linearized kinematics are assumed, so field quantities are

all functions of referential coordinates x1,x2,x3f g. Using indicial

notation (i,j~1,2,3), the components of displacement, strain, and

stress are respectively ui,eij ,sij , and the summation convention is

employed for index pairs, such as eii:e11ze22ze33. Scalar

quantities are written in normal type, while vector and tensor

variables are distinguished by bold face. For example, the full

notation for the position vector is x~xiei. Since field quantities

will be understood by their context and the base vectors are fixed,

for simplicity the explicit argument x will be suppressed and we

can work solely with components of tensorial quantities. Differ-

entiation with respect to spatial coordinates xj is denoted by the

comma subscript, such as the components of the displacement

gradient tensor ui,j~Lui=Lxj . (See Table 1 for nomenclature used

throughout.).

The Homogeneous Inclusion Problem
The boundary value problem of interest is a solid body of

infinite extent (xi[R3), which includes an inclusion (cell) sub-

volume denoted V I bounded by a closed surface S. The

remainder exterior volume, occupied by the matrix (gel), is VM.

Initially, the stress and strain fields in both domains are zero when

the cell is relaxed. Under load-free stimulation, the cell would

contract by a uniform inelastic strain bij , but due to the presence of

the gel the cell achieves a constrained strain of eij , which is what

we seek. In the absence of body forces, the equilibrium field

equations for the components of the stress tensor (sij ) and traction

vector (ti ) are

sij,j~0, and sij~sji, ð1aÞ

ti~sijnj , ð1bÞ

where n is the unit normal (DnD~1) to a surface. Equations (1a) and

(1b) represent equilibrium of volumetric and surface elements,

respectively, both of which apply wherever the fields are

sufficiently smooth and differentiable. The matrix is assumed to

be unloaded at remote boundaries, so sij?0 as DxD??.

Since the inclusion and matrix are bonded at surface S, the

displacements ui are continuous, yet some of their derivatives may

be discontinuous, so the following ‘jump’ conditions are enforced

along xi[S

sij

� �� �
S
nj~0, ð2aÞ

eij

� �� �
S
sj~0, ð2bÞ

where here n is the unit outward normal to S, and s is any

orthogonal tangent vector in S (sini~0). The notation

f½ �½ �S:f z{f { denotes the jump in quantity f with limiting

values f z and f { on outer and inners sides of S, respectively.

Equation (2a) enforces equilibrium of surface elements in S, while

eq. (2b) enforces continuity of in-surface strains stemming from

displacement continuity ( ui½ �½ �S~0).

The infinitesimal strain-displacement relations in linear elastic-

ity theory are

eij~ ui,jzuj,i

� �
=2~eijzbij , ð3Þ

with the strain decomposed into elastic (eij ) and inelastic (bij ) parts,

and bij represents the constant, (stress-free) transformation strain

in the inclusion (taken to be zero in the matrix). The constitutive

equations for stress are sij~Cijklekl , where Cijkl are the 4th-order

stiffness tensor components, which if isotropic gives

sij~2me’ijzkekkdij , ð4aÞ

m~
E

2(1zn)
, k~

E

3(1{2n)
: ð4bÞ

Here, the elastic strain is decomposed further into deviatoric

(e’ij~eij{ekkdij=3) and dilatational (ekk) parts, m and k are the

respective shear and bulk moduli (also given in terms of Young’s

modulus E and Poisson’s ratio n), and dij is the Kronecker delta.

For now, we are considering the homogeneous inclusion problem

where the properties m and k are common to the inclusion and

matrix (only bij is different), but this will be relaxed later when we

consider the inhomogeneous inclusion problem.

Solution for an isotropic, ellipsoidal inclusion. The

general solution found by Eshelby was expressed in terms of the

following scalar-valued fields

Cell-in-Gel Analysis
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w xð Þ~
ð

VI
Dx{x’D{1 dV ’, ð5aÞ

y xð Þ~
ð

VI
Dx{x’DdV ’: ð5bÞ

The quantities w and y are harmonic and biharmonic potential

functions, respectively, that satisfy

+2y~2w, ð6aÞ

+4y~2+2w~
{8p insideS,

0 outsideS:

�
ð6bÞ

The potentials, w and y, are smooth (analytic) functions at all

points except along S (with unit outward normal components ni),

where they suffer discontinuities in the following derivatives

w,ij

� �� �
S
~wz

,ij {w{
,ij ~4pninj , ð7aÞ

y,ijkl

h ih i
S
~yz

,ijkl{y{
,ijkl~8pninjnknl , ð7bÞ

with superscripts z and { denoting respective quantities

evaluated just outside or inside S.

We consider the case of an ellipsoidal inclusion, which besides

being a rather versatile object in analysis, is the only known shape

where the strain and stress fields inside the inclusion are uniform

[12,13]. This greatly simplifies the calculation. The boundary of

the ellipsoid has principal axes, ordered as a1§a2§a3, and the

domain of V I is

x1=a1ð Þ2z x2=a2ð Þ2z x3=a3ð Þ2ƒ1: ð8Þ

The volume of the ellipse is Ve~(4=3)pa1a2a3.

When isotropic properties are used the displacement and strain

fields are

ui(x)~Bijk(x)bjk, ð9aÞ

eij(x)~Dijkl(x)bkl , ð9bÞ

with

Bijk(x)~Q½y,ijk{2ndjk w,i{2(1{n) dijw,kzdik w,j

� �
�, ð10aÞ

Dijkl(x)~

Q½y,ijkl{2ndklw,ij{(1{n) w,kj dilzw,kidjlzw,ljdikzw,li djk

� �
�,

ð10bÞ

where Q~1= 8p(1zn)½ �. The tensors B and D will be expressed in

terms of the following integrals

I(l)~v

ð?
l

A(s)ds, ð11aÞ

Ii(l)~v

ð?
l

ai(s)A(s)ds, ð11bÞ

Iij(l)~v

ð?
l

ai(s)aj(s)A(s) ds, ð11cÞ

with v~2pa1a2a3, A(s)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1(s)a2(s)a3(s)

p
and ai(s)~1=(a2

i zs).

The argument of the integrals (l) is zero for all points inside the

inclusion, and for exterior points is taken as the largest positive

root of

aK (l)xkxk~
x2

1

a2
1zl

z
x2

2

a2
2zl

z
x2

3

a2
3zl

~1: ð12Þ

Here, we adopt the modified index convention as used in [8], in

which repeated lower case indices are summed as usual, but

repeated upper case indices are not summed. Instead, the upper

case indices just take the same value as their lower case

counterparts. For example, the equation of the ellipsoid surface

can be written in this way as simply aK (0)xkxk~1. The resulting

potentials are

w~
1

2
½I(l){xnxn IN (l)�, ð13aÞ

y,i~
xi

2
½I(l){xnxn IN (l)�{a2

I ½II (l){xnxn IIN (l)�
� 	

: ð13bÞ

To evaluate eq. (10), we need the higher derivatives of w and y.

The first derivatives of eq. (11) are

I,p(l)~{vA(l)l,p(l), ð14aÞ

Ii,p(l)~ai(l)I,p(l), ð14bÞ

Iij,p(l)~ai(l)aj(l)I,p(l): ð14cÞ

From here on the I -integrals, A and a9s are understood to be

functions of l, so the argument will be dropped for simplicity. Note

that by eq. (12) the derivative of bracketed expressions in eq. (13)

reduce to

½Iij���k{xnxnINij���k�,q~Iij���k,q{ aNxnxnð ÞIij���k,q{2xqIQij���k

~{2xqIQij���k:
ð15Þ
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Using again eq. (12) and taking derivatives of eqs. (13a) and

(13b) gives

{w,i~xi II , ð16aÞ

{w,ij~dij IIzxi II ,j : ð16bÞ

{y,ijk~ djkxizdikxj

� �
MIJzxixjMIJ,kzdijxkMIK , ð16cÞ

{y,ijkl~dijdklMIKz dikdjlzdjkdil

� �
MIJzdijxkMIK,l

z dikxjzdjkxi

� �
MIJ,lz dilxjzdjlxi

� �
MIJ,kzxixjMIJ,kl ,:

ð16dÞ

with the definition MPQ~IQ{a2
PIPQ. With this, eqs. (10a) and

(10b) become

Bijk~Q 2ndjkxiIIz2(1{n) dijxkIKzdikxjIJ

� ��
{ dikxjzdjkxi

� �
MIJzdijxkMIKzxixjMIJ,k

� �	
,

ð17aÞ

Dijkl~SijklzQ 2ndklxi II ,jz(1{n)
�

dil xk IK ,jzdjlxkIK,izdik xlIL,jzdjkxlIL,i

� �
{dijxkMIK,l{ dikxjzdjkxi

� �
MIJ,l

{ dil xjzdjl xi

� �
MIJ,k{xixjMIJ,kl

	
,

ð17bÞ

with

Sijkl~

Q dijdkl ½2nII{MIK �z dikdjlzdjkdil

� �
½(1{n) IKzILð Þ{MIJ �

� 	
:

ð17cÞ

This result is valid for exterior and interior points, recallingzzzz

that the I -integrals are functions of l(x) in the matrix, but l~0 on

the boundary S and inside the inclusion. Inside an ellipsoidal

inclusion all derivatives of the I9s and M9s vanish, resulting in

Dijkl~Sijkl (constant), which is the well-known Eshelby tensor

(denoted from here on as S0
ijkl ).

Following [8], the I -integrals above are expressed in terms of

elliptic integrals (E and F ) as

I~2v a2
1{a2

3

� �{1=2
F h,kð Þ, ð18aÞ

I1~2v a2
1{a2

2

� �{1
a2

1{a2
3

� �{1=2½F h,kð Þ{E h,kð Þ�, ð18bÞ

I3~2v a2
2{a2

3

� �{1
a3a1=a2ð Þ1=2

{ a2
1{a2

3

� �{1=2
E h,kð Þ

h i
, ð18cÞ

F (h,k)~

ð h

0

1{k2 sin2 s
� �{1=2

ds, ð18dÞ

E(h,k)~

ð h

0

1{k2 sin2 s
� �1=2

ds, ð18eÞ

h(l)~ sin{1 a2
1{a2

3

� �
= a2

1zl
� �� �1=2

, ð18fÞ

k2~ a2
1{a2

2

� �
= a2

1{a2
3

� �
: ð18gÞ

Knowing only I , I1 and I3 is sufficient, since other I -integrals

can be found from the relations

I1zI2zI3~2vA, ð19aÞ

a2
1{a2

2

� �
I12~I2{I1, ð19bÞ

3I11zI12zI13~2vAa1, ð19cÞ

and the rest from cyclic permutation of indices (1,2,3). Note that

2vA~4p for interior points when l~0.

Computing the required derivatives of I9s in eq. (17) are given

below. First, it is convenient to define the following functions

h~2= a2
K xkxk

� �
, ð20aÞ

G~a3
K xkxk, ð20bÞ

J~ a1za2za3ð Þ=2{hG, ð20cÞ

L~vAh: ð20dÞ

Differentiating eq. (12) by xp, solving for l,p, and then

differentiating again gives

l,p~aPxph, ð21aÞ

l,pq~dpqaPhz hG{aP{aQ

� �
l,pl,q: ð21bÞ

From eqs. (14) and (21a), the first derivatives of the I -integrals

are then

I,p~{LaP xp, ð22aÞ

Cell-in-Gel Analysis
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Ii,p~ai I,p, ð22bÞ

Iij,p~aiaj I,p: ð23cÞ

From eqs. (21) and (22), and the fact that aP,q~{a2
Pl,q we

obtain the second derivatives

I,pq~L JzaPzaQ

� �
haPaQ xpxq{aP dpq

� �
ð23aÞ

Ii,pq~ai I,pqzhaI aPaQxpxq

� �
, ð23bÞ

Iij,pq~aj Ii,pqzhaJaPaQxpxq

� �
: ð23cÞ

Using eqs. (14), (21a), and (22), derivatives of M-quantities in eq.

(17b) can be written

MIJ,k~{LlaI aJ aK xk, ð24aÞ

MIJ,kl~

LaI aJ JzaIzaJzaKzaLð Þl{1½ �haK aLxkxl{laK dklf g: ð24bÞ

Finally, the displacement and strain fields are computed by eqs.

(9a) and (9b), and the stresses are found from

sij xð Þ~
Cijkl S0

klmn{dklmn

� �
bmn, x[V I,

Cijkl Dklmn(x)bmn, x[VM,

(
ð25Þ

where dklmn~(dkmdlnzdkndlm)=2 are the components of the 4th-

order symmetric identity tensor.

The isochoric, incompressible limit. The deformation of

biological materials and most soft polymers can reasonably be

considered as isochoric (volume preserving, i.e., ekk~0 when

n~1=2) and incompressible continua, since by eq. (4b) the typical

bulk modulus k is quite large compared to the shear modulus m. In

the limit n?1=2 relevant to the cell-in-gel problem, the problem

simplifies somewhat. In general the dilatation in the inclusion is

ekk~SkkmMbmM , which reduces by eq. (19) to

ekk~8pQ 1znð Þbkk=3z2Q(1{2n)IK b’kK : ð26Þ

using the deviator of the transformation strain (b’ij ). Thus, when

the transformation strain is isochoric (bkk~0) and the material is

incompressible (n~1=2), the constrained inclusion strain is also

isochoric (ekk~0) and Q~1=(4p). From here on we will assume

the following isochoric, cylindrical form for bij

bij

� �
~b

1 0 0

0 {1=2 0

0 0 {1=2

2
64

3
75, ð27Þ

where b is a negative material constant (simulating cell contrac-

tion). The explicit inclusion strains are then

e11~b 6a2
1I11{a2

2I12{a2
3I13

� �
=(8p), ð28aÞ

e22~b 2a2
1I21{3a2

2I22{a2
3I23

� �
=(8p), ð28bÞ

e33~b 2a2
1I31{a2

2I32{3a2
3 I33

� �
=(8p), ð28cÞ

e12~e23~e31~0: ð28dÞ

Decomposing the inclusion stress (sij~s’ijzpdij ) into its

deviator (s’ij ) and mean stress (p~skk=3), gives

s
0
ij~2m e

0
ij{C b

0
ij

h i
, p~k ekk{C bkk½ �, ð29aÞ

C~C(x)~
1, xe [V I,

0, xe [VM:

(
ð29bÞ

The difficulty is that as n?1=2, k?? while ekk and bkk?0,

leaving p seemingly indeterminate. Returning to the general strain

equation, eqs. (16) and (18), the dilation is

emm~Dmmklbkl~2Q 4pnCbmm{(1{2n)w,mnbmn

� �
, ð30aÞ

The elastic part is.

emm~emm{Cbmm~{
1{2n

1{n
Cbmmz

w,mnbmn

4p


 �
, ð31Þ

When eq. (31) is multiplied by k (see eq. (4b)), we get a finite

limit due to the canceling factors 1{2n,

p~{
E

3(1{n)
Cbmmz

wmnbmn

4p


 �
ð32Þ

Specializing to the form of bij in eq. (27), taking n~1=2 and

using eqs. (16b) and (22), the mean hydrostatic stress in the matrix

and in the inclusion are

pM~Eb
I1(l){Lx2

1a2
1

4p


 �
, ð33aÞ
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pI~Eb
I1(0)

4p
{

1

3


 �
: ð33bÞ

The Inhomogeneous Inclusion
So far, we considered the case where the elastic properties of the

inclusion and matrix are the same (aside from bij ). If they are

different, similar calculations can be done using the ‘‘equivalent

inclusion’’ method [8]. The stresses in the inclusion and matrix

are, in general,

sI
ij~CI

ijkl eI
kl{bkl

� �
, sM

ij ~CM
ijkl eM

kl : ð34Þ

The approach is to introduce a fictitious transformation strain

(b�ij ), or ‘‘eigenstrain’’, to simulate the perturbed elastic fields due

to the inhomogeniety. This is used to replace the elastic properties

of the inclusion with those of the matrix, while preserving the

correct stresses in V I

CI
ijkl eI

kl{bkl

� �
~CM

ijkl eI
kl{b�kl

� �
: ð35Þ

With appropriate choice of eigenstrains, we just solve the

previous homogenous inclusion problem with the new transfor-

mation strain (b�ij ), giving the inclusion strains as

eI
ij~S0

ijklb
�
kl , ð36Þ

where S0
ijkl are again the components of the Eshelby tensor. The

rest of the solution method is the same as before.

The new task is to determine b�ij , which is algebraic but not

trivial. Substituting eq. (36) in eq. (35) gives

CI
ijkl S0

klmn b�mn{bkl

� �
~CM

ijkl S0
klmn b�mn{b�kl

� �
: ð37Þ

Rearranging, we get

½CI
ijkl S0

klmn{CM
ijklS

0
klmnzCM

ijkldklmn�b�mn~CI
ijklbkl : ð38Þ

Equations (38) represent algebraic equations to solve for the six

unknown eigenstrains (b�mn). In general the explicit equations are

rather messy, so they are not written here. In the isotropic,

isochoric (nI~nM~1=2) case the equations simplify somewhat.

One can show that bkk~0 implies b�kk~0. Taking bij as given in

eq. (27) results in

b�11~b½2gzQ(g{1) {I2zI3{3a2
2I22z2a2

3I23{3a2
3I33

� �
�=P,

ð39aÞ

b�22~b½{gzQ(g{1) 2I2{2I3{3a2
2I22{a2

3I23z6a2
3I33

� �
�=P,

ð39bÞ

b�33~b½{gzQ(g{1) {I2zI3z6a2
2I22{a2

3I23{3a2
3I33

� �
�=P,

ð39cÞ

b�12~b�23~b�31~0, ð39dÞ

with the additional definitions

P~2g2z4Qg(g{1) N2zN3zM32ð Þz6Q2(g{1)2 N2N3{M2
32

� �
,

ð39eÞ

NJ~IJ{3a2
JIJJ , (39f)and g~EM=EI is the ratio of Young’s

moduli (or equivalently, shear moduli) of the matrix and inclusion.

Mechanical Energy. Once the stress in the inclusion is

known, Eshelby also showed that the elastic strain energy (U ) of

the entire system (inclusion+matrix) takes a surprisingly simple

form, based only on the stress in the inclusion and its

transformation strain. The elastic strain energy of the system is

U~U IzUM, where the respective energies in the inclusion and

the matrix are

U I~
1

2

ð
VI

sI
ij eij{bij

� �
dV , ð40aÞ

UM~
1

2

þ
S

tM
i ui dS~{

1

2

þ
S

sI
ijuinj dS: ð40bÞ

In eq. (40b), we started with the traction (tM
i ) applied to the

matrix along S. Equilibrium of the surface requires that the

traction on the inclusion be tI
i ~{tM

i , which has the associated

stress inside the inclusion sI
ij and the outward normal nj . Now

Gauss’s theorem is used to convert to a volume integral over the

inclusion,

UM~{
1

2

ð
VI

sI
ijui

h i
,j

dV~{
1

2

ð
VI

sI
ijeij dV , ð41Þ

where we used equilibrium eq. (1a) and fact that sijui,j~sijeij by

symmetry of sij . When added to eq. (40a), we are left with only

U~{
1

2

ð
VI

sI
ijbijdV , ð42Þ

which is a rather convenient result. The entire elastic energy can

be calculated from the inclusion stress sI
ij and the stress-free

transformation strain bij . There is no need to calculate the solution

outside the inclusion. Furthermore, for the ellipsoidal inclusion the

integrand is independent of x, so

U~{
1

2
VesI

ijbij , ð43aÞ
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UM~{
1

2
VesI

ije
I
ij : ð43bÞ

Equation (43a) gives the total strain energy in the system, which

is potentially useful to determine energy requirements for the cell.

Equation (43b) is the strain energy in the matrix, which is just the

mechanical work done on the gel by the cell. Both results are valid

for the homogeneous and inhomogeneous inclusions, where b�ij
would be used in the calculation of sI

ij and eI
ij , but the actual

transformation strain bij would still multiply the stress in eq. (43a).

Results and Discussion

With the general analysis complete, explicit calculations are

presented below. The fact that an analytical solution is available is

fortunate, and this readily facilitates easy parametric studies of the

problem. In particular, we are interested in predicting the

constrained strain state in the cell, knowing its load-free

contraction {b (fractional shortening). If the elastic properties

of the cell and gel are known, one can then estimate the average

stress state in the cell. Also, since the cell-in-gel experiments

include a dispersion of small beads in the gel, their measured

displacements during cell contraction can be compared to the

predicted displacement field in the gel matrix to further validate

the analysis. Cell-in-gel measurements are ongoing and such a

comparison will be done elsewhere. For now, we use typical values

to get a sense of expected values and trends with respect to

relevant parameters in myocytes.

From here on it is convenient to take the principal axes of the

cell as a1,a2,a3ð Þ~ a,b,cð Þ, spatial coordinates as x1,x2,x3ð Þ~
x,y,zð Þ, and displacement components as u1,u2,u3ð Þ~ u,v,wð Þ.

The cell and gel both undergo isochoric (constant volume)

deformations, so we take n~1=2 and assume the transformation

strain in the cell is of the form given in eq. (27). All results below

were calculated in Mathematica v.8.

Although cell to cell variability exists, a typical healthy,

ventricular myocyte is about 100|40|30mm, and in our

preliminary experiments, isolated myocytes contract by about

{8% to {10% in an un-crosslinked fluid medium (load-free).

Thus, we take as a nominal cardiomyocyte a~0:05 mm,

b~0:02 mm, c~0:015 mm, and b~{0:1.

Homogeneous Inclusion Analysis
Strain knockdown. Assuming the shear moduli of the cell

and the gel are the same (so-called homogeneous inclusion) and

using eq. (28) with the geometry of our nominal cardiomyocyte,

the calculated strain state in the constrained inclusion is

eij

� �
~b

0:2055 0 0

0 {0:09495 0

0 0 {0:1107

2
64

3
75: ð44Þ

The strain values above, when normalized by the axial

(longitudinal) transformation strain (b~b11), only depend on the

aspect ratios of the cell (here, b=a~0:4, c=b~0:75). The quantity

e11=b~0:2055, which we term the ‘‘knockdown’’ factor, is the

ratio of constrained axial strain to load-free axial strain during cell

contraction. For the homogeneous inclusion the knockdown is

about 1=5. Thus, an unloaded cell that contracts by {10 % is only

able to contract to {2% strain in a gel of the same elastic

properties. Figure 2A provides curves of the knockdown as a

function of the aspect ratios, b=a and c=b, and the open circle

identifies our baseline case. All curves start at the origin b=a~0,

since this corresponds to the limiting case of an infinitesimally thin

inclusion with no actual volume. The topmost curve for c=b~1
corresponds to the prolate spheroid, and the maximum value of

e11=b~0:402 (about 2=5) at b=a~1 corresponds to a spherical

inclusion.

For our canonical myocyte, the knockdown factor is 0.2. Note

that the assumption behind this calculation is that the inclusion is a

passive elastic object with b fixed. The real myocyte, however, can

actively regulate its calcium signal and myofilament sensitivity in

response to mechanical stress [14,15], and hence the actual

knockdown factor is likely to be less severe than the above

theoretical calculation. This would require, however, that the

magnitude of b increase, thereby making the stress larger. One

could then reinterpret b as no longer a material constant, but

rather a dynamic function of mechano-chemo-transduction

processes. Measuring the constrained strain of the cell and

knowing the properties of the gel would, in principle, allow this

function to be identified. In any event, the curves in Fig. 2A show

that for a given transformation strain, the knock-down factor is less

Figure 2. Axial strain and stress in the homogeneous inclusion.
(A) strain knockdown factor (ratio of constrained strain, e11, to load-free
transformation strain, b) versus geometric aspect ratios of the inclusion
(b=a, c=b), (B) normalized longitudinal stress (ratio of s11 to Young’s
modulus, E).
doi:10.1371/journal.pone.0075492.g002
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(i.e. less contraction is possible) for a slender cell (such as an atrial

myocyte) than a stout cell (such as ventricular myocyte).

Inclusion stress & surface traction. The stress state inside

the homogeneous inclusion, corresponding to eq. (44), is calculated

to be

sij

� �
~E

0:0745 0 0

0 {0:00500 0

0 0 {0:00394

2
64

3
75: ð45Þ

The non-zero values above are in fact normalized principal

stresses, showing that the longitudinal stress is tensile (s11~

0:0745E) while transverse stresses (s22~{0:005E,
s33&{0:004E) are compressive, as would be expected. While

the stress state is multiaxial, it is approximately uniaxial

considering the relative values (Ds22=s11D&1=15). The maximum

shear stress is easily calculated as tmax~(s11{s22)=2~0:0400E.

Figure 1B shows the dependence of the normalized longitudinal

stress (s11=E) on the aspect ratios of the inclusion. The curves

show that the stress in a slender cell is higher than that of a stout

cell for a given transformation strain and cell stiffness. This

suggests a high sensitivity of slender atrial myocytes to constraint

conditions, which may explain the observation that stretch of the

atria is a main contributor to atrial fibrillation and structural

remodeling [16]. High blood pressure and excessive ventricular

wall stress can also cause ventricular arrhythmias and fibrillation

[17].

The surface traction distribution is also of importance,

considering that various signaling molecules that reside near or

on the cell membrane. While the stress state is uniform within an

ellipsoidal inclusion, the traction distribution on its boundary is

not. The traction vector ti is calculated from eq. (1b), where

nj~xja
{2
J h=2ð Þ1=2Dl~0 ð46Þ

is the unit outward normal to the surface in terms of h given in eq.

(20). Figure 2A provides the (normalized) normal and shear

traction distributions along the corresponding dashed contours in

the inset. To give a sense of magnitude and direction of the

traction along boundary points, Fig. 3B provides a scaled

schematic of the traction vector distribution in the positive

quadrant of the y~0 plane. The normal component of the

traction is sn~tini~sijninj , and Fig. 3A shows it changing from

slight compression (over about 60 % of the length) to rapidly

increasing tension until a maximum value of 0:0745E at the apex

(x~a). The shear component of the traction is tn~tisi~sij sinj ,

where sini~0, and the figure shows how it starts at zero at the

waist (x~0), rises almost linearly across the length, but then

reaches a maximum and steeply drops to zero near the apex. In

each case, the variation between different contour lines is relatively

minor, since the aspect ratio c=b~0:75 is not far from

axisymmetric.

Correlating the spatial distribution of strain and stress with

cellular architecture provides important insights on how mechan-

ical load is supported by cellular structures and how mechanical

stress is transduced by macromolecular complexes to affect

biochemical reactions. One important finding of our analysis is

that the stress state within the cell is uniform, at least from a

continuum viewpoint. Hence myofilaments are expected to bear a

uniform distribution of the strain and stress throughout the entire

cell during contraction. The myofilament is composed of the thick

myosin filament, the thin actin filament, the titin filament, and

associated proteins. Upon excitation, the thick filament pulls on

the thin filament to generate active contraction of the myocyte,

while the titin filament provides passive elastic constraint during

both stretch and contraction [18]. Titin also contains catalytic

kinase domains and serves as a mechano-chemo-transducer [19].

A uniform distribution of the strain and stress across the cell

suggest a uniform activation of mechano-chemo-transduction

inside the cell.

Another important finding is that the traction distribution on

the cell surface is highly non-uniform. This is expected to generate

non-uniform strain and stress in the extracellular matrix, the

cytoskeleton network, and the intercalated disk [20]. The

extracellular matrix covers the cell surface and is linked to the

cytoskeleton inside the cell via molecular interactions from integrin

to costamere to z-disk proteins. The intercalated disk forms end-to-

end attachment between adjacent cells and is linked to the

cytoskeleton and myofibril via fascia adherens and cadherin

complexes. Some proteins in these complexes also serve as

mechano-chemo-transducers that respond to mechanical stress

and activate integrin-linked kinase signaling pathways to regulate

the muscle contraction and hypertrophic gene expression [21].

Our analysis show a mapping of the non-uniform traction on the

cell surface (Fig. 3), suggesting that the stress is relatively low in the

extracellular matrix at cell’s waist but increases sharply towards

the cell’s apex, and the highest stress level exists near the

intercalated disks at the apex.

Interior and exterior mechanical fields. Selected field

quantities (displacements, longitudinal strain, and longitudinal

Figure 3. Traction distribution along the boundary of the
homogeneous inclusion for the baseline case (b=a~0:4,
c=a~0:3). (A) normal (sn) and shear (tn) components of traction
vector along contours in the planes y~0 and z~0, (B) scaled traction
vector distribution along y~0 contour.l.
doi:10.1371/journal.pone.0075492.g003
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stress) in the inclusion and matrix are shown in Fig. 4 in the plane

y~0. This is a symmetry plane, so v~e2i~s2i~0 everywhere.

Figure 4A shows a deformed grid where the displacements have

been magnified ten-fold to clearly show the constrained inclusion

which pulls on the surrounding matrix along the x-axis yet pushes

outward on the matrix along the z-axis. Figure 4B shows a

contour plot of the magnitude of displacements (DuD), normalized

by the inclusion’s half-length (a) in the positive quadrant of the

y~0 plane. Streamlines are overlaid to show the directions of

displacements during contraction, again showing how the matrix is

drawn inward toward the apex of the inclusion at (x,y,z)~(a,0,0)
yet pushed away from the cell toward the waist at (x,y,z)~(0,0,c).
The contour plot also shows that non-zero displacements are

localized in the vicinity of the cell and rapidly approach zero as

DxDw2a, or so. Thus, this displacement map provides useful

information about the expected displacements in the matrix and

the spatial extent where useful displacement measurements of

embedded beads can be made. Contour plots of the longitudinal

strain (e11) and normalized longitudinal stress (s11=E) in this same

region are shown in Figs. 4C and 4D, respectively. Both show ‘hot-

spots’ in the matrix near the apex of the cell, and at the waist

(although less severe). One can see that the active regions of stress

and strain in the matrix are confined to less than one half-cell

length in extent along the x-axis and somewhat less along the

z-axis.

Inhomogeneous Inclusion Analysis
For the case when matrix mechanical properties are different

from the inclusion (the inhomogeneous inclusion) the calculated

knockdown factors are provided in Fig. 5. The red curve is for the

cell with the nominal dimensions given (baseline case). The other

curves correspond to slender cells (b=av0:4, with fixed

c=b~0:75). As expected, all curves decrease monotonically with

the modulus ratio g~EM=EI, i.e. a stiffer matrix results in a

smaller constrained strain magnitude. Conversely, the limiting

Figure 4. Interior and exterior mechanical fields in the y~0 plane for the baseline case (b=a~0:4, c=a~0:3). (A) deformed grid
(displacements magnified 10|), (B) magnified view of positive quadrant showing displacement streamlines and contours of normalized
displacement magnitude (DuD=a), (C) longitudinal strain (e11) field, (D) normalized longitudinal stress (s11=E) field (Young’s modulus, E).
doi:10.1371/journal.pone.0075492.g004

Figure 5. Axial strain knockdown factor for the inhomoge-
neous inclusion. Axial constrained strain of the inclusion (e11)
normalized by transformation strain (b) is plotted against matrix/
inclusion modulus ratio (g~EM=EI) for several inclusion aspect ratios
(b=a) with c=b~0:75 fixed.
doi:10.1371/journal.pone.0075492.g005
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case of e11~b is recovered when g~0, corresponding to no

constraint from the matrix (load-free in solution, EM~0).

For our baseline case, Fig. 5 shows further details of how strain

components and various stress measures depend on the modulus

ratio g. As shown in Fig. 6A, the magnitudes of all strain

components decrease monotonically toward zero as the stiffness of

the gel becomes large compared to that of the cell (g&1). The

magnitudes of the corresponding stress components (normalized

by the elastic modulus of the inclusion/cell, EI), on the other

hand, increase monotonically from zero at g~0 (no gel) to finite

limiting values as g?? (rigid gel). The mean hydrostatic stress (p)
and the maximum shear stress (tmax) are plotted with dashed lines

and these follow similar trends.

Until now, we have provided dimensionless plots in the interest

of generality. Given that we have a linearly elastic solution, the

strains are proportional to b and the stresses are proportional to

EIb, so that the provided curves can be easily scaled to obtain

actual strains and stresses once the true values of b and EI are

known. For example, based on recent force-strain data acquired

by longitudinal stretching of single cardiomyocytes [22], we

estimate the elastic modulus of a contracting cardiomyocycte to be

of the order EI&30 kPa. This means that the longitudinal stress

of a cardiomyocyte contracting (with 10% load-free contraction) in

a gel of similar properties (g~1) would be about s11&2:2 kPa,

and the ‘‘blocked’’ longitudinal stress in the cell within a very stiff

gel (g??) would be roughly s11&3 kPa.

Energy Requirements and Mechanical Work Output
An interesting outcome of our analysis is the ability to calculate

the mechanical energy expended by the single myocyte during

contraction. The total elastic strain energy by eq. (43a), using eqs.

(44) and (45), is U~Ve(s11b11zs22b22zs33b33)=2~0:00397
EVe for the homogeneous inclusion. For the inhomogeneous

inclusion, Fig. 7 shows the corresponding dimensionless strain

energy, U=(EIVe), as a function of the modulus ratio g, a useful

result to estimate energy requirements of the cell in various

constraining gels of different stiffness. The bold line shows the total

strain energy, and the thin lines show the contributions in the

inclusion and matrix. All curves start at zero energy when g~0.

We recognize that in the absence of any external mechanical loads

the cell still has certain internal energy requirements to achieve

contraction (notably the ‘‘strain energy’’ to compress titin proteins

and other internal elastic components), but here we are interested

in the additional strain energy arising from external sources to the

cell so we take this baseline energy to be zero. According to this

definition, the total strain energy rises monotonically as g is

increased and reaches a finite limiting value as g??. Incidentally,

using EI&30 kPa and Ve~6:3|10{5 mm3, gives a strain energy

of U&7:5 pJ for the case of the homogeneous inclusion. Most of

this energy is carried inside the inclusion (U I~6pJ), and it follows

a similar trend approaching the same limiting value as the total

energy. The work done by the cell on the gel is UM~1:5 pJ. The

strain energy in the matrix, however, is non-monotonic with g,

rising at first, reaching a peak value of UM
max~EIVe=800, then

decreasing toward zero. This is a sensible result, since in either

limiting case (zero force, or zero displacement) g?(0,?) the work

done on the gel is zero.

In the case of our canonical myocyte contracting in a gel of the

same stiffness, the total strain energy estimated from our

mechanical analysis is about 7:5 pJ per cell contraction. This

Figure 6. Inhomogeneous inclusion results (baseline case
b=a~0:4, c=b~0:75) versus modulus ratio g~EM=EI. (A) strain
magnitudes (Deij D) are normalized by the magnitude of transformation
strain (DbD), (B) stress components (sij), mean stress (p), and maximum

shear stress (tmax), each normalized by inclusion modulus (EI).
doi:10.1371/journal.pone.0075492.g006

Figure 7. Normalized strain energy (U) for the inhomogeneous
inclusion problem versus modulus ratio g~EM=EI. The strain
energies are normalized by the inclusion modulus (EI) and inclusion
volume (Ve) and are calculated for the baseline case (b=a~0:4,
c=b~0:75).
doi:10.1371/journal.pone.0075492.g007
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value is close to the &10 pJ work output by a single myocyte

contraction measured in the carbon fiber experiment by

Bollensdorff et al. [2].

The mechanical stress states are certainly different in a myocyte

in the cell-in-gel system versus the carbon fiber system, but

considering the finite stores of ATP in the cell it seems reasonable

to compare the two on an energetic basis. In non-biological

mechanical systems, the elastic energy is often successfully used to

compare structural systems with very different stress and strain

states, and the energy turns out to be the unifying measure for

many failure analyses. Accordingly, the energy (or more precisely,

energy density) puts a given myocyte subject to various boundary

conditions on a similar footing, thereby allowing a comparison of

their mechanical behaviors. Also, the energy density should be less

sensitive to the broad variability in myocyte shape than other

measures (such as stress and strain fields). The fact that the

energies are similar between the cell-in-gel model and the carbon

fiber experiment seems to support this view, but direct comparison

to experimental data is needed to provide more convincing proof.

We note that the total energy required for myocyte contraction

should include not only this mechanical energy but also the energy

used to maintain metabolic homeostasis, ionic homeostasis, Ca2z

signaling and other cellular processes. Nevertheless, our analysis

shows that the energy required for a single myocyte contraction is

dependent on the gel stiffness, which importantly suggests that the

energy expenditure/requirement should be higher for the myocyte

contraction under pathological conditions with increased stiffness

in myocardium, such as infarction, fibrosis, etc.

Limitations and Perspectives

The current analysis provides an analytical solution that readily

lends itself to parametric studies. As shown, it gives a useful first-

order analysis of the magnitudes of constrained strains, stresses,

and energies involved, which provides guidance for using cell-in-

gel experiments to investigate mechano-chemo-transduction of

myocytes under various mechanical loads.

As noted above, the results above were largely provided in

dimensionless form to keep the results general and to investigate

trends. Specific values, where needed, were cited only for

illustration purposes. In particular, the value b~{10% was

chosen as a typical value, which seemed reasonable in light of our

preliminary results on isolated healthy myocytes, as well as the

results of [23] which measured end diastolic sarcomere length (SL)

at 2:07 mm and 1:81 mm at end systole in the whole heart (about

{12% strain). However, it is well known that larger contraction

strains are typically observed under preload, as when these

researchers overstretched myocytes to an end-diastolic length of

2:25 mm and measured an end systolic length of 1:60 mmm (about

{29% strain). Any particular value of b should not be viewed as a

canonical value or a model limitation. As experimental results

become available, the value of b (and the aspect ratio of the cell)

will be calibrated to measurements on each myocyte, and then a

quantitative comparison of the model to experimental data can be

performed.

As mentioned previously, our mechanical analysis treats the

myocyte as an idealized elastic, yet contractile, entity rather than a

real live myocyte that can actively regulate its contractile force via

mechano-chemotransduction, which contributes to the Anrep

effect where increased afterload enhances contractility [24]. The

active regulation of myocyte contractility via mechano-chemo-

transduction is of particular interest for which the cell-in-gel

system was designed to investigate. The mechanical analysis here

serves to quantify force generation by the myocyte at a basal level

(no active regulation), so we can quantitatively evaluate the

enhancement of contractility above the basal level (with active

regulation). Thus, this analysis builds the necessary foundation for

a next study to elucidate the mechano-chemotransduction

mechanisms and to investigate ‘up regulation’ of the calcium

transients. The current cell-in-gel system was designed to study

afterload effects on mechano-chemotransduction apart from the

preload effect; therefore, the effect of preload is not yet captured.

In the future, we plan to stretch the cell-in-gel system to study the

preload effect, which is expected to enhance contractility,

consistent with the Frank-Starling effect, and which will add

another layer of complexity.

While initially motivated by the cell-in-gel experiments, we can

imagine some in vivo situations where our mechanical analysis

might also apply. In a normal heart where myocytes essentially

beat in synchrony, the strain field is relatively uniform, albeit a

transmural gradient. However, under pathological conditions

asynchronous contraction (i.e. arrhythmia, fibrillation) and inho-

mogeneous inclusion (i.e. infarction, fibrosis) occur in the

myocardium, and these can be readily simulated by the current

analysis. For example, the ‘inverse’ of the current problem is that

of an infarct scar in a contracting myocardium, where the local

stress field around the scar would be important to know. Now the

interesting region is outside the inclusion rather than inside. Our

mechanical analysis still applies, but now with the sign of b
reversed. With this simple modification the stresses can still be

correctly calculated. Our analyses predict that myocytes located

closer to the scar region will experience a higher stress than those

farther away, and the analysis quantifies the spatial dimension of

this affected region. Interestingly, arrhythmogenic activities often

arise from the infarct boarder zone, supporting the notion that

high mechanical stress, among other factors, significantly contrib-

utes to arrhythmogenesis.

Regarding limitations, the most arguable assumption of the

current analysis is that of the ellipsoidal shape of the inclusion. If

one wants greater fidelity in modeling the actual shape of a

particular cardiomyocycte the current analysis can be extended by

the algorithm given in Rodin [13] to account for irregular

polyhedra inclusions, or certainly by direct finite element

simulations. Such analyses would be more complex and compu-

tationally intensive to cover a large range of parameters.

Considering the significant cell-to-cell variability that exists in

nature and the burgeoning parameter space necessary to capture

more complex cell shapes, the benefit/cost of such alternatives is in

doubt. We expect the results of a finite element analysis would

show only a minor second-order difference in stress and strain

fields between an ellipsoid and a more realistic shape, such as a

brick-like ovoid. The existence of a (relatively) simple analytical

solution for the ellipsoid was a fortuitous development that we

happily exploited. For the purpose of a quick parameter study, an

analytical solution is almost always preferred to a more involved

numerical approach. Hence, the current analytical model sets a

useful foundation for future studies as more complex features are

desired.

Another extension that might be useful is to consider the case of

linear viscoelastic cells and/or gels. For certain boundary value

problems, of which the current analysis is one, the ‘‘Correspon-

dence Principle of Viscoelasticity’’ [25] can be used when the

corresponding linear elasticity solution is known. The approach

only involves replacing the elastic properties by their complex

counterparts to obtain the time-dependent solution. We will

pursue this extension as needed, depending on the experimental

results and a viscoelastic characterization of the gel and cell

planned for the near future.
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Concluding Remarks

Mechanical stress is known to have significant impact on the

heart function and disease development. What remains a major

mystery is the cellular and molecular mechanism(s) that transduce

stress to affect cardiac myocytes. As a necessary step towards

understanding the mechanical stress effects, here we provide a 3-D

mechanical analysis of a single myocyte beating in an elastic

matrix that simulates the mechanical environment in myocardium

under certain pathological conditions. The general analytic

solution facilitates parametric studies of the problem and provides

a quantitative mapping of the mechanical strain and stress inside

and outside the myocyte. Our analyses reveal the following

phenomena of particular patho-physiological importance. The

fractional shortening of myocyte is dependent on the geometric

dimensions of the cell and the stiffness of the surrounding matrix.

A slender or softer cell has less fractional shortening. The stress

state is uniform within the cell and can be approximated as

uniaxial, considering the large ratio (&15|) between the

longitudinal and the transverse stresses. Interestingly, the surface

traction is highly non-uniform. It is minimal at the waist, rises

along the length, and reaches a maximum near the apex. This

suggests that the stress sensing molecular complexes in the

extracellular matrix and the intercalated disks should experience

non-uniform distribution of the normal and the shear stress and

higher stress at some ‘hot spots’, especially under certain

pathological conditions (asynchronous contraction, increased

stiffness due to infarction, fibrosis, etc.). Our analyses will also

inform studies of the mechanotransduction mechanisms that link

mechanical stress to cardiac function and remodeling in health

and disease.
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Pflügers Archiv : European Journal of Physiology 462: 39.

3. Petroff MGV, Kim SH, Pepe S, Dessy C, Marban E, et al. (2001) Endogenous

nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in

cardiomyocytes. Nat Cell Biol 3: 867–873.

4. Prosser BL,Ward CW, Lederer WJ (2011) X-ROS Signaling: Rapid Mechano-

Chemo Transduction in Heart. Science 333: 1440–1445.

5. Luo J, Onofiok E, Shi C, Liu R, Lam KS (2009) A novel hydrogel functionalized

with specific peptidomimetic ligands for 2-D and 3-D cell culture. Advances in

experimental medicine and biology 611: 19.

6. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal

inclusion, and related problems. Proc Royal Soc A 241: 376–396.

7. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc Roy Soc

London Series A, Math & Phys Sci 252: 561–569.

8. Mura T (1991) Micromechanics of Defects in Solids. Kluwer Academic

Publishers, 2nd edition.

9. Hashin Z, Shrikman S (1963) A variational approach to the theory of the elastic

behavior behaviour of multiphase materials. Journal of the Mechanics and

Physics of Solids 11: 127–140.

10. Hill R (1965) A Self-Consistent Mechanics of Composite Materials. Journal of

the Mechanics and Physics of Solids 13: 213–222.

11. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of

materials with misfitting inclusions. Acta Metallurgica 21: 571–574.

12. Eshelby JD (1961) Elastic inclusions and inhomogenieties. In: Sneddon IN, Hill

R, editors, Progress in Solid Mechanics, North-Holland, Amsterdam, volume 2.

89–140.

13. Rodin GJ (1996) Eshelby’s inclusion problem for polygons and polyhedra.

Journal of the Mechanics and Physics of Solids 44: 1977–1995.

14. Allen DG, Kurihara S (1982) The effects of muscle length on intracellular

calcium transients in mammalian cardiac muscle. The Journal of Physiology
327: 79.

15. Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison

between the sarcomere length-force relations of intact and skinned trabeculae
from rat right ventricle. influence of calcium concentrations on these relations.

Circulation research 58: 755.
16. De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst

WH, et al. (2011) Mechanisms of atrial structural changes caused by stretch
occurring before and during early atrial fibrillation. Cardiovascular Research 89:

754–765.

17. Evans SJ, Levi AJ, Jones JV (1995) Wall stress induced arrhythmia is enhanced
by low potassium and early left ventricular hypertrophy in the working rat heart.

Cardiovascular Research 29: 555–562.
18. Gautel M (2011) The sarcomeric cytoskeleton: who picks up the strain? Cell

structure and dynamics 23: 39–46.

19. Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in
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