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Abstract: The cardiac late sodium current (INa,L) has been in the focus of research in the recent decade. The first reports on the sustained 

component of voltage activated sodium current date back to the seventies, but early studies interpreted this tiny current as a product of a 
few channels that fail to inactivate, having neither physiologic nor pathologic implications. Recently, the cardiac INa,L has emerged as a 

potentially major arrhythmogenic mechanism in various heart diseases, attracting the attention of clinicians and researchers. Research ac-
tivity on INa,L has exponentially increased since Ranolazine, an FDA-approved antianginal drug was shown to successfully suppress car-

diac arrhythmias by inhibiting INa,L. This review aims to summarize and discuss a series of papers focusing on the cardiac late sodium 
current and its regulation under physiological and pathological conditions. We will discuss critical evidences implicating INa,L as a poten-

tial target for treating myocardial dysfunction and cardiac arrhythmias. 
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1. INTRODUCTION 

 Cardiac arrhythmias are one of the primary causes of death and 
a major public health problem. However, anti-arrhythmic drug 
therapies using ion channel blockers led to conflicting results. 
Many seemingly promising drugs turned out to be proarrhythmic. 
Clinical experiences by many physicians sum up to two important 
observations: (1) Ion channels blockers are risky, and some exacer-
bate arrhythmias. (2) Relatively successful drugs, such as beta 
blockers and amiodarone, modulate not only ion channels but also 
Ca

2+
 homeostasis. Implantable cardioverters and catheter ablation 

opened a new dimension in the reduction of arrhythmia related 
mortality. However, these techniques, being introduced during the 
last decade, are not widely applicable in several cases of life threat-
ening arrhythmias. Therefore, pharmacological therapy remains the 
most frequently applied medical intervention in controlling ar-
rhythmias and heart failure. 

 The late sodium current, initially seen as a tiny sustained tail of 
sodium current, was out of the focus of research for a long time, but 
immediately gained increasing interest since it was linked to cardiac 
diseases. Upregulation of the plateau sodium current has been im-
plicated in multiple inherited or acquired arrhythmia syndromes or 
structural heart diseases. At the same time, inhibition of the currents 
was demonstrated to prevent or reduce arrhythmic activity in multi-
ple pathologic models. Exponential growth in the number of re-
search papers and comprehensive reviews [1-6] published in the last 
few years indicates the great expectation on INa,L as a new, potential 
therapeutic target. At the present, the greatest limiting factor for the 
progress of this field is the lack of specific INa,L inhibitors. Devel-
opment of highly specific INa,L blockers will facilitate research and 
provide archetype for a new class of antiarrhythmic drugs.  

2. BRIEF HISTORICAL REMARKS ON CARDIAC LATE 
SODIUM CURRENT 

 Dubois and Bergman reported their observations on a persis-
tent, tetrodotoxin (TTX) sensitive current present in frog Ranvier 
node in 1975. The current was interpreted as a fraction of voltage 
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activated sodium current that failed to inactivate [7], which put 
forththe concept of INa,L. In 1979, Coraboeuf et al. observed that 
low concentration of TTX shortened canine Purkinje AP without 
reducing the amplitude of ‘the normal rapid sodium current’ [8]. 
The authors suggested two critical features for INa,L in their publica-
tion: a) there is a sodium current flowing during entire plateau of 
cardiac AP b) involvement of non-cardiac voltage dependent so-
dium channels. In accordance with these results Attwell et al. re-
ported the presence of a TTX sensitive non inactivating sodium 
current at negative membrane potentials in sheep Purkinje fibers 
[9]. They suggested that the ‘window current’ mechanism is in-
volved in generatingthe sustained sodium current and predicted that 
this current might exert large effect on action potential (AP) dura-
tion. In 1989, Kiyosue and Makita conducted a systematic study on 
the sodium current in guinea pig ventricular myocytes [10]. They 
identified three different types of sodium channel activities, two of 
them present longer than 100 ms following depolarization, thus 
casted as ‘late’ activity. They characterized a ‘late scattered mode’ 
and a ‘burst mode’ to be responsible for INa,L (discussed below), and 
showed that the ‘normal’ (transient) channel activation is followed 
by late activity in less than 4% of patches. They confirmed the ob-
servation by Coraboeuf et al.on the AP shortening effect of TTX, 
and suggested that INa,L contributes to regulation of the AP duration. 
The central question in these early studies was whether or not this 
relatively small Na

+
 current can play a significant role in shaping 

the AP duration. In the following years INa,L was found upregulated 
by hypoxia, free radicals or ischemic metabolites [11-13]. The find-
ing that elevated INa,L was associated with heart diseases and linked 
to increased propensity of arrhythmias markedly boosted research 
activities in this field[14-17]. Recent experimental data obtained by 
self

AP-clamp [18] indicate that earlier data obtained using squre 
pulse voltage-clamp technique might have underestimated the mag-
nitude of INa,L [19, 20]. Furthermore, recent publication by Horvath 
et al. [18] show that the magnitude of INa,L is comparable with that 
of major potassium currents, making it a cardinal player in shaping 
the AP morphology.  

3. THE IDENTITY OF LATE NA
+
 CURRENT: ONE CUR-

RENT WITH MULTIPLE MECHANISMS? 

 Mammalian cells express several isoforms of voltage-dependent 
sodium channels distinguishable by their kinetics, unit conductance 
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and drug sensitivity. The dominant isoform in cardiac tissues is the 
Nav1.5 (also called h1 or skm II) encoded by the gene SCN5A, 
which is relatively insensitive to tetrodotoxin, saxitoxin and �-
conotoxin [21, 22]. The pore forming, large � subunit is associated 
with four auxiliary ß1through ß4 subunits which are known to mod-
ify the kinetics and voltage dependence of the channel. ß1 but not ß2 
subunit was shown to slow down the inactivation of cardiac sodium 
current, thus to facilitate INa,L [23]. In contrast to this, ß3 subunit 
was found to accelerate the inactivation, reducing INa,L [24]. At 
resting membrane potential, the channel is in non-conductive state, 
but sufficient depolarization (V1/2: -40/-50 mV) activates the chan-
nel to conductive state [25-27]. 

3.1. Different Single Channel Activity Patterns May Contribute 
to INa,L  

 Upon changes of membrane potential sodium channels undergo 
a sequence of conformational changes. Following significant depo-
larization the majority of closed channels open in less than two 
milliseconds and then inactivate within next 2 ms [28, 29]. Transi-
tion from inactivated state to closed state is promoted by repolariza-
tion. If membrane remains depolarized the first opening can be 
followed by reopening. Maltsev & Undrovinas studied single so-
dium channels and observed and modelled three distinct types of 
activity present in human ventricular myocytes [30]. In Transient 
Mode (TM) the first opening is followed by 5-10 rapid reopening 
resulted from flip-flops between open and inactive state of the 
channel (Fig. 1). This repetitive activity is terminated within less 
than 40 ms when channel absorbed in a second inactive state, re-
sulting in rapid decline seen in the ensemble current (INa,L ). The 
current magnitude drops below 10% of the peak within 3 ms. The 
Transient Mode contributes to ~90% of the peak sodium current , 
but 20 ms later it inactivates and contribute to less than 1% of the 
total Na

+
 current. This gating mode alone adequately explains the 

INa,T (0-5 ms) of the peak sodium current but cannot explain the 
sustained INa,L seen during the AP plateau. The second gating mode 
that contributes to the early phase or Burst Mode (BM) is character-
ized by sustained openings with brief closing periods (Fig. 1). In-
creased transition rate from inactivated to open state and reduced 
probability toward the second inactivated state causes long lasting 
(100-300 ms) single channel activity before terminated by the ab-
sorbing state. These non-inactivating bursts had been known to 

exist in both skeletal and cardiac muscle and were referred to as 
slow, non-inactivating, or “cloudburst” currents [31-33]. Facilita-
tion of Burst Mode were reported from cardiac muscles after 
chemical intervention and termed ‘failure of inactivation’ [34]. 
Channels display Burst Mode at very low probability generating 
only a tiny current. Hence, its contribution is negligible to INa,L 
during the first 2-5 ms following the upstroke. However, as the 
Transient Mode component of INa decays following the peak, the 
relative contribution of Burst Mode to total current can grow as 
high as 50%. Burst Mode current then declines and 200-300 ms 
later it is replaced by the third gating mode referred as Late Scat-
tered Mode (LSM). Late Scattered Mode can be derived from Tran-
sient Mode by reducing transition rates from inactive to open and 
second inactive (absorbing) state. It is characterized by sparse re-
opening for an extended period being as long as 500-1000 ms (Fig. 
1).  

 The involvement of the three different gating modes in INa 
changes dynamically during AP. Based on their contribution to 
sodium current it is possible to separate three phases or time period. 
The early phase of AP (0-5 ms) is dominated exclusively by Tran-
sient Mode; BM and LSM are negligible. This is followed by an 
intermediate phase of AP (5-20 or 5-40 ms) where all three gating 
modes are present with steeply reducing weight of TM. The late 
phase of INa (referred as INa,L) starts 20-40 ms after the AP upstroke 
and maintained by Burst Mode and Late Scattered Mode, and then 
Late Scattered Mode becomes the only gating mode shaping the 
late sodium current. Shifts in the relative magnitudes of the differ-
ent gating modes caused by channel mutations or pathologic condi-
tions have been implicated in cardiac electric disorders [23, 35-43]. 
Targeted pharmacological modulation of different gating modes is 
proposed to exert cardioprotective and antiarrhythmic effects [44-
46]. 

3.2. The Window Current 

 The “window” region is the voltage range where the steady 
state activation and inactivation curves of sodium channels overlap. 
In the window current voltage range, channels can recover from 
inactivation and reopen. This flip-flop between active and inactive 
states can provide a steady-state current if membrane potential is 
held within this sensitive voltage range. When the identity of INa,L is 
discussed in literature, the flip-flopping of the Na channel in the 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic illustration for different channel activity patterns contributing to late sodium current.  
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window region is usually the first mechanism used to explain the 
origin of sustained plateau sodium current [1-4]. The window 
mechanism seems like a plausible resolution to seemingly incom-
patible rapid inactivation of the sodium channels seen in voltage 
clamp experiments under rectangular command steps and the re-
markably persistent sodium current during a several hundred milli-
seconds long AP plateau. However, while no experimental observa-
tion is known to question the existence of window mechanism, its 
contribution to INa,L might be limited because of the voltage range 
where plateau is found. The center of the window region occurs 
around -60 mV, far below the plateau voltage (about 0 mV) in the 
ventricular myocytes of most species [2, 47]. In addition, the win-
dow current is very small under normal conditions (the maximum is 
less than 5% of I/Imax [25, 47-49]. Therefore, the window current is 
unlikely to be a major contributor to the late Na

+
 current. Further-

more, experimental observations by Beyder et al. indicate that shear 
stress can shift the window current significantly to more negative 
voltage range [50]. Since our present knowledge on the position and 
with of window is based on electrophysiologic data obtained in 
unloaded cardiomyocytes, we can assume that the contribution of 
window to INa,L is even less than predicted by current models. Nev-
ertheless, it is possible that mutations or pathologic regulation of 
the channel might shift the activation or inactivation curve and alter 
the magnitude and voltage range of the window current [14].  

3.3. Non-Equilibrium Gating  

 Different gating modes and the concept of window current can 
describe the behavior of sodium current elicited with square pulse 
voltage clamp. However, the sodium channels in functioning car-
diac cells are exposed to dynamically changing voltage. Experimen-
tal data show that INa,L is greatly facilitated when evoked with repo-
larizing voltage ramp or AP shape command [18-20]. Clancy et al. 
proposed a new mechanism named ‘non-equilibrium gating’ that 
can explain these observations [19]. According to this concept, 
recovery from inactivation is modulated by dynamically changing 
(non-equilibrium) voltage. The probability for reopening is in-
creased during hyperpolarizing ramps resulting in facilitation of the 
activation transition. The novelty in this hypothesis is that the tran-
sition rate from a given state is modulated by the voltage trajectory 
the channel experienced beforehand. Hence, kinetic parameters of 
the channel are influenced by its short-time history. Magyar et al. 
provided strong experimental evidence to support the non-
equilibrium gating hypothesis. They demonstrated that the open 
probability of the sodium channel is higher during voltage ramp 
than that observed with constant (rectangular or square pulse) volt-
age command, and the sodium current duration depends on the 
duration of ramp [20]. Furthermore, indirect evidence supporting 
this hypothesis were provided by Horvath et al. when they showed 
that the magnitude of INa,L is comparable to those of major potas-
sium currents, and the INa,L current profile is determined by the 
voltage profile of AP in ventricular myocytes [18]. These observa-
tions led them to the conclusion that non-equilibrium gating is the 
chief factor determining the profile of TTX sensitive current during 
AP [18]. Non-equilibrium gating theory does not preclude the in-
volvement of other gating modes in INa,L. All the mechanisms dis-
cussed in this session might coexist and contribute to shaping the 
profile of sodium current during AP. Since different gating modes 
are assumed to have different drug sensitivities or affinities [44, 51, 
52] understanding the mechanism behind INa,L can help to develop 
new antiarrhythmic strategies. 

3.4. Non-cardiac sodium channels in the heart 

 Association of ECG abnormalities to epilepsy [53, 54] and 
myotonic disorders [55, 56] raised the possibility that the same 
sodium channels responsible for hereditary diseases of nervous 
system or skeletal muscles might also cause repolarization abnor-
malities in the heart. Later, several ‘non cardiac’ isoforms were 
found in cardiac tissue by functional tests based on voltage depend-

ency and drug sensitivity in different species [38, 57-59]. Using 
RT-PCR or immunocytochemistry the expression of Nav1.1, 
Nav1.2, Nav1.3, Nav1.4 and Nav1.6 were detected in the hearts of 
multiple species [59-64]. According to the report of Westenbroek et 
al., non-cardiac isoforms represent a substantial fraction (23%) of 
the total number of sodium channels in mouse heart [61]. Moreo-
ver, the distributions of different isoforms show characteristic pat-
terns. While the cardiac isoform Nav1.5 is localized preferentially to 
the sarcolemma including intercalated disks, it is absent from T-
tubules; Nav1.1 and Nav1.3 (non-cardiac) isoforms are found to be 
localized to the T-tubules and absent from the cell surface. Brette et 
al. showed that the density of the cardiac sodium channel isoform 
(in channels/�m

2
) is 13 and 10 at the cell surface and at the t-

tubules, respectively. In contrast, the cell surface and t-tubule densi-
ties for neuronal sodium currents are 0.3 and 2.5 [65]. Nav1.4 and 
Nav1.6 showed low level surface staining. These data indicate that 
cardiac and non-cardiac isoforms of sodium channels may have 
different roles in the electrical excitation of cardiac cells. While the 
cardiac isoform is likely responsible for the cell-to-cell propagation 
of electric signal, the primary role of non-cardiac isoforms may be 
to couple the electric signal to calcium dynamics [60, 61]. How, 
such functional distinction was questioned by earlier work of Mal-
hotra et al. who observed colocalization of Nav1.1 and Nav1.5 iso-
forms in rat myocardium [66]. 

 The presence of non-cardiac isoforms in cardiac muscle natu-
rally raises the question: what is the contribution of these non-
cardiac sodium channels to total sodium current, especially to INa,L? 
To address this question, Biet et al. presented data suggesting that 
the contribution of non-cardiac sodium channels to the peak INa is 
between 5-10%, but 44% of INa,L is generated by non-cardiac iso-
forms [57]. This observation has been confirmed by Yang et al. 
reporting that Nav1.8 provide the 38% of INa,L [58]. Considering the 
different kinetics, voltage and drug sensitivity of cardiac and non-
cardiac voltage regulated sodium channels, as well as the distinct 
localization of different isoforms within the cardiac cell, these ob-
servations open a new direction in the exploration of physiological 
and pathological roles of INa,L. Research for isoform specific so-
dium channel inhibitors might provide a new strategy in antiar-
rhythmic therapy. 

4. THE PHYSIOLOGY OF LATE SODIUM CURRENT 

 Several key ion currents delicately shape the plateau of cardiac 
action potential. To understand the interplay of currents and voltage 
during the plateau phase it is important to note that (1) the currents 
flowing in this phase are small relative to those that govern the 
upstroke and terminal repolarization, (2) the algebraic sum of the 
currents is small. The latter accounts for repolarization rate being 
close to zero during phase two [67]. Because the impedance of the 
cell membrane is high during the AP plateau phase and the magni-
tudes of the currents are inherently small, even subtle changes in 
any current can have a large impact on AP morphology. Addition-
ally, the plateau currents IKr and IKs are sensitive to changes in 
membrane potential near the plateau voltage. This synergistic inter-
play between currents and voltage during the AP plateau phase 
have significant impact on the time course of terminal repolariza-
tion, and thus the AP duration [68].  

4.1. Contribution of Late Sodium Current to Cardiac Electric 
Activity  

 Most of our current knowledge on the electrophysiology of INa,L 
originates from the experiments employing rectangular pulse volt-
age clamp and the computer simulations based on those data. These 
results predicted a tiny flat current during the entire length of AP. 
Because of its small magnitude, the contribution of INa,L to shaping 
AP under physiologic conditions was a subject of debate. Neverthe-
less two lines of new experimental evidence indicate that the late 
sodium current significantly affect the AP morphology. First, TTX 
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shortened the AP [8, 10]; and second, facilitation of INa,L lengthened 
the AP [18, 69]. Furthermore, an increasing number of observations 
indicate that the magnitude of INa,L was markedly underestimated in 
earlier reports. When using a ramp or AP shaped voltage clamp 
command, there is a substantial increase in the INa,L current magni-
tude [19, 20]. Recent publication employing 

self
AP-clamp technique 

indicates that the magnitude of the current during plateau is compa-
rable to those of delayed rectifier potassium currents [18]. 

 When cardiac sodium current is measured by rectangular com-
mand, the late component is not clearly distinguishable from INa,T , 
and it is often fitted by multiexponential function to separate the 
late component as a smooth continuation of the decaying early 
phase. When INa,L is recorded under AP command, two major type 
of profiles are observed. In the first case the current magnitude 
decays monotonically; this profile was observed in dog and pre-
dicted by some of the models [70-72]. In the second type, the decay 
of INa,T is followed by a slow current accumulation during the pla-
teau, then it reaches a peak before the terminal repolarization of AP 
and declines rapidly toward zero when membrane potential returns 
to the resting level. This saddle-like profile was reported from hu-
man [73], canine [74], and guinea pig heart [18, 75]. These differ-
ences might arise from variances of AP shape in different species, 
but the impact of methodological differences cannot be excluded. 

 INa is a key player in propagation of cardiac electric activation 
in the myocardium [64, 76] and in less extent to pacemaker activity 
especially in young age [77]. Due to its contribution to AP duration, 
INa,L has strong influence in determining QT interval of the ECG. 
Increased INa,L is associated with lengthened QT interval (Long QT 
syndrome) and increased risk for arrhythmias [48, 78-83]. In accor-
dance, inhibiting INa,L was shown to shorten QT interval [84, 85]. 
Mutations causing facilitation of late sodium current are also asso-
ciated with increased QT dispersion [53, 84]. How increased INa,L 
leads to increased QT dispersion is not completely understood, but 
transmural heterogeneity of sodium channels is probably also in-
volved [74, 86]. QT dispersion is determined routinely in clinical 
cardiology and regarded as one of the most valuable predictor for 
arrhythmias [87, 88]. Thus, increased repolarization inhomogeneity 
due to pathologic INa,L might provide the substrate for arrhythmias 
caused by sodium channel mutations. Other forms of electric dis-
turbances are also linked to pathologic sodium channel function 
such as Brugada syndrome [15, 89-94], slow impulse propagation 
[25, 95, 96], familiar atrial fibrillation [97, 98] and sick sinus syn-
drome [99, 100]. Cases, where sodium channel mutations were 
associated with cardiomyopathy were reported often with electric 
disturbances [101-103]. The link between altered channel function 
and structural diseases has not been established. However, these 
cases indicate that altered ionic balance may lead to structural heart 
diseases via modulation of genetic regulation. 

4.2. Transmural Heterogeneity of INa,L  

 It is well known that transmural differences in ionic currents 
densities and AP shape are present in the ventricles [104-107]. Dif-
ferences in sodium current magnitude between epicardial and endo-
cardial cells were observed in canine and murine heart [74, 86, 
108]. In addition, INa,L was found larger in M cells than in the 
epicardial or endocardial region of canine ventricular wall contrib-
uting to the transmural differences in AP parameters. M cells are 
also known to display steeper rate dependence of AP than either 
epicardial or endocardial cells [109-111]. These data indicate a 
significant contribution of INa,L to rate adaptation of AP length. This 
hypothesis is supported by earlier observations of Nuyens et al. 
who reported that increased INa,L results in increased lengthening of 
AP duration at low pacing rate [112]. The issue was addressed by 
Guo et al. in a systematic study where they demonstrated that the 
AP lengthening induced by low pacing rate was increased when 
INa,L was facilitated with Anemonia toxin (ATX-II) [113]. By con-
trast, inhibition of INa,L with TTX reduced the AP duration sensitiv-

ity to pacing rate. Based on these data they concluded that INa,L 
plays a key role in rate adaptation of AP duration; this conclusion 
has been confirmed by others [114, 115]. The involvement of late 
sodium current in rate adaptation can explain why INa,L facilitation 
caused by mutant sodium channel increases the risk for arrhythmias 
following frequency changes [112].  

 The connection between INa,L and arrhythmias is further sup-
ported by Lowe et al. [79] who found that INa,L magnitude is higher 
in female mice compared to males and concluded that this differ-
ence contributes to higher arrhythmia susceptibility of females. The 
increased susceptibility of females to arrhythmias may be further 
compounded by reduced repolarization reserve and larger intra-
myocardial inhomogeneity of calcium and potassium currents in 
females [116-123]. 

4.3. INa,L and Calcium Homeostasis of Cardiac Cells 

 Sodium channels contribute to total Na
+
 entry into cardiac cells 

in significant extent [124, 125]. In spite of the seemingly small 
magnitude of INa,L, there is a consensus that when facilitated, the 
contribution of the sustained component to total Na

+
 entry is com-

parable to that of the INa,T [3, 6]. It is well documented that INa,L 
facilitation results in increase of cytosolic sodium concentration, 
and it’s specific inhibition can prevent sodium accumulation in 
cardiac myocytes [126-128]. Beyong its impact on the sodium ho-
meostasis of cardiac cells, INa,L is also implicated in modulation of 
the calcium homeostasis. Increased cytosolic Na

+
 level leads to 

elevated cytosolic calcium concentration which is known to cause 
positive inotropic response [126, 129]. Calcium homeostasis in 
linked to INa,L through multiple mechanisms. 

4.3.1. INa,L facilitates Ca
2+

 Influx via L-type Calcium Channels 

 As an inward current INa,L lengthens AP and elevates the pla-
teau voltage. The longer and higher depolarization increases the 
amount of Ca

2+
 entering to the cytoplasm through the L-type cal-

cium channel. The profile of L-type calcium current (LTCC) during 
AP was a subject of debate for long time. Model simulations based 
on experimental data from traditional rectangular pulse voltage 
clamp experiments predicted divergent dynamics during AP. Some 
of the models predicted that LTCC is present only under early pla-
teau then it declines [130, 131]. According to these models, AP 
lengthening should not alter Ca

2+
 entry in significant extent. Later, 

using action potential clamp technique it was well documented that 
L-type calcium current is present during the entire AP plateau phase 
and declines with the terminal repolarization in all mammalian 
models studied [107, 132-135]. Therefore, lengthening the AP 
should significantly increase the amount of Ca

2+
 entry via L-type 

calcium channels. What prevents the inactivation of L-type calcium 
current during plateau is not completely understood, but reopening 
of inactivated channels has been demonstrated during long depo-
larization [135, 136]. Another possible mechanism for sustained 
calcium current could be the window current. The crossing point for 
activation and inactivation curves is between -20 to 0 mV allowing 
a subpopulation of L-type calcium channels to flip-flop between 
open and inactive state [73, 137, 138]. Another mechanism that 
could maintain calcium current during plateau is the non-
equilibrium gating mechanism discussed earlier with relation to 
sustained sodium current [2, 19, 20]. However, this possibility has 
not been tested experimentally. In summary, when INa,L prolongs 
AP, Ca

2+
 influx is facilitated. 

4.3.2. Slip Mode Conductance: Reexamining an Old Paradigm 

 The Lederer group published an interesting paper in the Science 
in 1998 where they raised the possibility of Ca

2+
 entry through TTX 

sensitive sodium channels [139]. They claimed that the selectivity 
of sodium channel can substantially reduce following PKA activa-
tion enabling Ca

2+
 to permeate as readily as Na

+
. The idea was not 

completely new, Ca
2+

 permeation through sodium channels in the 
absence of Na

+
 was reported previously [140]. However, subse-



An Emerging Antiarrhythmic Target Current Pharmaceutical Design, 2015, Vol. 21, No. 8    1077 

quent works produced contradictory observations and suggested 
that TTX sensitive Ca

2+
 entry following PKA activation involves L-

type calcium channels but not modulated selectivity of sodium 
channels [141, 142]. Later, TTX sensitive calcium currents were 
reported from multiple animal models strengthening the evidences 
against the slip mode conductance hypothesis [71, 143-145]. Thus, 
the slip mode conductance hypothesis has been abandoned. Never-
theless, there is a possibility that this mode of Ca

2+
 entry might 

need to be revisited. It has been known for a long time that the se-
lectivity of sodium channels is determined by a small number of 
amino acids. In the same time, single mutation in the selectivity 
filter can render the channel permeable to Ca

2+
 [146-149]. Knowing 

that various sodium channel mutations [5, 83, 97, 99, 103, 150-152] 
exert diverse impact on the electrophysiology and are associated 
with deteriorating effects on ionic homeostasis of cardiac myocytes 
it is plausible that some mutation might involve altered ion selectiv-
ity.  

4.3.3. Interaction between INa,L and Sodium/Calcium Exchanger 

 The function of NCX in cardiac myocytes is highly complex 
[124, 153-156]. NCX transports Ca

2+
 into or out of the cell depend-

ing on the membrane voltage and the gradients of Na and Ca
2+

 
across the membrane. at the beginning of systole when the mem-
brane is depolarized, the driving force for the Na

+
/Ca

2+
 exchanger 

puts NCX at the reverse mode. During this time the NCX transports 
Ca

2+
 into the cytoplasm while removing Na

+
 (reverse mode) [134, 

155]. Starting at the late systole and throughout the diastole, NCX 
operates in the forward mode to remove Ca

2+
 from cytoplasm in 

exchange with Na
+
 entry () [134, 155]. This function is crucial for 

restoring diastolic Ca
2+

 level and for long term calcium homeosta-
sis. However, increased Na

+
 concentration in the cytoplasm shifts 

the Na
+
/Ca

2+
 equilibrium to reduce Ca

2+
 removal and facilitate cal-

cium entry, resulting in Ca
2+

 overload. The consequence is ana-
logue to the digitalis induced Ca

2+
 loading leading to elevated cyto-

solic Ca
2+

 level [154, 157].  

5. MODULATION OF LATE SODIUM CURRENT 

 The heart adapts to changing conditions, such as physical activ-
ity, environmental stress or emotional state. This adaptation re-
quires moment-to-moment fine tuning of ion channels and trans-
porters, including sodium channels. The late sodium current is 
known to be modulated by several physiologic and pathologic fac-
tors. 

5.1. The Complex Modulation of INa,L by Cytosolic Ca
2+

  

 Ca
2+

 couples electric signal to contraction machinery in cardiac 
myocytes and provides an important feedback signal to ion chan-
nels and pumps of sarcolemma. Voltage gated Na

+
 channels are 

known to be regulated by Ca
2+

, calmodulin (CaM), Ca
2+

-CaM de-
pendent protein kinase (CaMK) and protein kinase C (PKC). These 
molecules in the signaling cascade modulate INa,L individually and 
cooperatively [158-162]. Though volume of research data on Ca

2+
-

CaM–CaMK dependent regulation of INa,L, accumulates rapidly, the 
complex mechanism of this function is still not understood due to 
confliction observations. In spite of contradictory data on the indi-
vidual elements, there is a consensus on that Ca

2+
-CaM–CaMK 

signaling facilitates cardiac sodium current, especially the late 
component [23, 158, 163]. The Ca

2+
 dependent modulation (both 

direct and indirect) modifies the inactivation of sodium channels. 
The sodium channel inactivation is a very complex process, involv-
ing cooperation of multiple distant regions (C-terminus, cytoplas-
mic linker between domain II and IV, and S4-S5 linkers of domains 
III & IV ) [164]. Ca

2+
 or CaM binding to this region is known to 

induce a small (5-10 mV) shift in the steady-state inactivation (SSI) 
curve. Because of the steepness of the function and the vicinity of 
resting membrane potential to the midpoint, relatively small 
changes in voltage sensitivity results in significant impact on the 
availability of sodium channels thus in turn on membrane conduc-

tance. Since the membrane potential approaches the sodium equilib-
rium potential when sodium conductivity is maximal, we can as-
sume that any change in sodium channel availability has stronger 
impact on the late than that of transient phase of sodium current. 
There are multiple Ca

2+
 and CaM binding locations identified be-

tween c-terminus and domain III allowing highly complex regula-
tion of channel function. Because of this complexity, mutations in 
the Ca

2+
 sensing region or pathologic conditions altering the Ca

2+
 

sensitivity may lead to diverse functional disturbances. 

5.1.1. Sodium Channel and Ca
2+

  

 The most ambiguous part of Ca
2+

 - CaM – CaMK dependent 
regulation of INa,L is that whether Ca

2+
 can modulate cardiac sodium 

channel directly. The question was addressed by Wingo et al. in 
2004 who proposed that Ca

2+
 binds directly to a dedicated motif 

located close to c-terminus and modulates Na
+
 channel function 

[165]. This conclusion was supported by several lines of experi-
mental data. First, a calcium binding motif (referred as EF hand) 
known from other Ca

2+
 regulated proteins was identified between 

domain IV and the CaM binding site in the cardiac sodium channel 
(Fig. 2). Second, using NMR spectroscopy it was demonstrated that 
Ca

2+
 effectively binds to this EF hand. Third, voltage clamp ex-

periments revealed that steady-state inactivation is shifted toward 
positive voltages in high cytosolic Ca

2+
 even in the presence of a 

CaM inhibitory peptide. Furthermore, mutations in the EF hand 
prevented both Ca

2+
 binding to EF motif and high Ca

2+
 induced 

shift in steady-state inactivation. These consistent observations led 
the authors to the conclusion that Ca

2+
 exerts direct regulatory ef-

fect on sodium channel. However, several observations from other 
groups suggested that CaM is essential to mediate Ca

2+
 effect 

whereas Ca
2+

 does not regulate sodium channel directly [166, 167]. 
The most important critique against the data from Wingo et al. was 
that the inhibitory peptide they used might not effectively prevent 
binding of CaM to sodium channels [164]. To resolve the conflict-
ing data reported by many independent experimentalists a new 
model was proposed by Shah et al [168]. According to this model, 
the sodium channel inactivation is modulated by the interaction 
between Ca

2+
 binding EF hand and CaM binding IQ motif. In dia-

stolic conditions, CaM binds to IQ motif of the c-terminus. When 
cytosolic Ca

2+
 concentration is high, CaM binds calcium which 

reduces its affinity to IQ segment. In the next step Ca/CaM de-
taches from IQ motif enabling it to interact with the EF hand, which 
is the critical step in this model: as it is proposed, binging of IQ 
motif to EF hand increases the calcium affinity of the EF hand by 
three order of magnitude. Later, Biswas and co-workers confirmed 
the direct Ca

2+
 regulation of sodium channels, but using truncated 

mutants they have shown that the IQ motif is not essential for the 
direct Ca

2+
 regulatory effect [169]. They also proposed that CaM-

mediated regulation is latent in cardiac sodium channel unless it is 
unmasked by mutations of the EF hand, or by extremely low Ca

2+
 

concnetration in cytoplasm.  

5.1.2. Calmodulin 

 Calmodulin (CaM) is a ubiquitous calcium sensing protein that 
mediates Ca

2+
 effects in various types of cells, including cardiac 

myocytes [166, 167]. CaM was shown to interact with the IQ motif 
of sodium channel and regulate gating mechanism [164, 166, 170]. 
The three dimensional configuration of CaM resembles a dumbbell; 
the C and N-terminus of the protein forms two globular structures 
(referred as C-lobe and N-lobe respectively) with two calcium bind-
ing regions interconnected with a short flexible shaft. Each lobe can 
bind two Ca

2+
 ions. At physiologically relevant Ca

2+
 concentrations 

the Ca
2+

/CaM complex forms a bridge between IQ motif on C-
terminus and the DIII-IV linker region [171]. This linker region is 
considered the inactivation gate of sodium channel [172]. When 
Ca

2+
 concentration is low and CaM is free of Ca

2+
 (apo-CaM), the 

C-lobe is bound to the IQ motif of C-terminus. In this configura-
tion, the N-lobe does not interact with the DIII-IV region and inac-
tivation is not affected [168, 171, 173]. When Ca

2+
 concentration is 
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elevated, Ca
2+

/CaM complex (holo-CaM) is formed and its affinity 
for the IQ motif is reduced by an order of magnitude [168]. There is 
a switch between C and N-lobes, and holo-CaM binds to the IQ 
motif through N-lobe. According to the model proposed by Sarhan 
et al, C-lobe can interact with the DIII-IV linker in this configura-
tion and the interaction results in a shift in SSI curve to depolariz-
ing direction. These observations indicate that the interaction be-
tween the C-lobe of holo-CaM and DIII-IV linker is responsible for 
the altered voltage sensitivity of inactivation [171]. Nevertheless, 
the holo-CaM/DIII-IV interaction is not the only possible mecha-
nism behind high Ca

2+ 
induce rightward shift of steady-state inacti-

vation, because the Ca
2+

 sensitivity is retained in the sodium chan-
nels even after IQ motif deletion. [169]. As discussed above, Ca

2+
 

can bind to the EF-hand of C-terminus to alter the voltage sensitiv-
ity of inactivation. Parallel to the direct regulation of sodium chan-
nel, CaM activates Calmodulin Kinase that further modulates the 
channel kinetics [174].  

5.2. Protein Kinases 

 The � subunit of cardiac sodium channel contains multiple 
phosphorylation sites located in the N-terminus and the first and 
third intracellular linker loop [175-178]. Phosphorylation of the 
channel may modulate gating kinetics to change the magnitude of 
INa,L. 

5.2.1. Calmodulin Kinase  

 Cardiac calmodulin kinase is a serine/threonine kinase involved 
in a multitude of cellular function in vide variety of cells including 
cardiac myocytes. The enzyme associates with and phosphorylates 
the � subunit of channel protein to alter the gating kinetics [179]. 
Cardiac myocytes express two predominant isoforms of calmodulin 
kinase type II (CaMKII): the nuclear (�B) and the cytoplasmic (�C) 
isoform. Sodium channels are regulated by the cytoplasmic isoform 
[158, 180, 181]. It is well established that CaMKII phosphorylates 
sodium channels at multiple sites (S571, S483/S484, S516, T594) 
in the first intracellular linker loop, resulting in complex effects that 
lead to increase of INa,L [170, 179, 182]. Generally, upregulation of 
CaMKII was shown to induce a negative shift in steady-state inac-
tivation, to enhance the slow or intermediate inactivation, and 

slowed recovery from inactivation. These effects individually and 
collectively may lead to gain- and loss-of function of the sodium 
current, contributing to pathologic conditions like Brugada syn-
drome [182, 183]. Furthermore, CaMKII was shown to augment 
INa,L and slow its decay in both normal an failing dog hearts [163]. 

 While substantial species-dependent differences were reported 
on the impact of CaMKII induced phosphorylation on sodium 
channel gating, the overall effect is to increase the late sodium cur-
rent, and conversely inhibition of the enzyme reduces INa,L. Wagner 
and co-workers reported negative shift of steady-state inactivation 
in rabbit cardiac myocytes following overexpression of CaMKII 
[179]. This observation was confirmed in expression system using 
HEK293 cells by Ashpole et al and Koval et al [182, 184]. In con-
trast, when Aiba and co-workers used freshly isolated guinea pig 
ventricular myocytes and CaMKII was directly added to the pipette 
solution, they observed a positive shift in steady-state inactivation 
[170]. Data regarding the activation of current are also inconsistent. 
Young and Caldwell reported a hyperpolarizing shift in the voltage 
dependence of activation [185], whereas no effect was seen by oth-
ers [170, 179, 182, 186]. Aiba et al also reported increased peak 
amplitude for the transient phase of sodium current [170], while 
others reported no change in this parameter [179, 182, 184]. There 
is little information on inactivation of the transient phase of INa. 
Wagner at al. observed significant deceleration of INa decay in the 
transient phase, but Aiba et al. observed no change [170]. Neverthe-
less, the majority of reports agree that CaMKII enhances the frac-
tion of channels undergoing intermediate or slow inactivation. Con-
sequently, upregulation of CaMKII facilitates INa,L and this is re-
versible with CaMKII inhibitors. A recent study by Horvath et al. 
used 

self
AP-clamp to record the INa,L during the action potential 

under physiological condition, and clearly show that the magnitude 
of INa,L during the action potential plateau phase is reduced by 
CaMKII inhibition [18]. The link between increased CaMKII activ-
ity and facilitated INa,L is confirmed in both healthy and diseased 
myocardium by others [162, 163, 187].  

5.2.2. Protein kinase A (PKA) 

 PKA is the mediator of ß-catecholamine signalization and key 
regulator of multiple functions in cardiac cells. The enzyme is 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of the structure of the �-subunit of cardiac sodium channel 

Each domain (DI-DIV) consists of six transmembrane segments (S1-S6) interconnected by intracellular and extracellular loops. The intracellular loop between 

DI-DII is the target region for CaMKII, DIII-DIV loop serves as inactivation gate and c-terminus is the Ca2+ and CaM sensor.  
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shown to facilitate sodium channel trafficking to sarcolemma thus 
increasing the INa,T [188, 189]. However, there are several conflict-
ing observations regarding the PKA dependent modulation on so-
dium channel gating and the physiologic function of PKA remains 
controversial [170, 183]. Tateyama et al. addressed the PKA modu-
lation of INa,L in expression model comparing wild type channels 
and three disease linked mutants. According to their observations, 
INa,L is insensitive to PKA-dependent phosphorylation in wild type 
channels whereas one of the pathologic mutant displayed enhanced 
INa,L following PKA activation [190].  

5.2.3. Protein kinase C (PKC) 

 At least seven members of PKC family is identified in mam-
malian myocardium [191]. Classic isoforms are activated by Ca

2+
, 

but several isoforms expressed in the heart are known to be insensi-
tive to Ca

2+
 [161]. Some isoforms require diacylglycerol and/or 

phospholipid for activation, thus activated through the same path-
way as phospholipase C. The expression level of the isoforms 
shows species-specific differences therefore interpretation of data 
must be done with caution. Further complications arise from the 
overlap in Ca

2+
 activation with CaMKII.  

 The serine residuum (rodent: S1505, human: S1503) phos-
phorylated by PKC is located in the third intracellular loop of car-
diac sodium channel known to play key role in the inactivation of 
INa [177, 183]. In expression system, PKC activation resulted in 
negative shift in steady state inactivation and voltage dependent 
decrease of peak amplitude. Single-channel data reported by Qu et 
al. showed that the probability of early (t<5 ms) and late (t>10 ms) 
channel openings were reduced when studied in Xenopus expres-
sion model [192]. In contrast, when Ma et al. studied the impact of 
elevated cytosolic Ca

2+
 on INa,L in isolated rabbit ventricular cardiac 

myocytes, they observed PKC dependent facilitation of the current 
[162]. The conflicting results could be explained by the different 
experimental models. In the expression system used by Qu et al. 
only �-subunit was expressed, whereas in the isolated cardiac myo-
cytes used by Ma et al. INa,L was measured in intact channels. Re-
cently, Ashpole et al. proposed that regulatory effects of CaMKII 
induced �-subunit phosphorylation cannot manifest on the cardiac 
sodium channel without the presence of additional protein, like ß-
subunit [182]. It is possible that, PKC phosphorylation cannot 
modulate the channel gating in the absence of ß-subunit. 

5.2.4. Serum- and Glucocorticoid-Inducible Kinases 

 Originally, serum- and glucocorticoid-responsive kinases 
(SGKs) were cloned in embryonic mammalian hearts and tumor 
cells, but later the enzyme was identified in virtually all tissues 
tested [193-195]. Until now, three isoforms (SGK1, SGK2 and 
SGK3) were characterized from different tissues. SGK1 and SGK3 
are the dominant forms in heart, while the expression of SGK2 is 
restricted [196]. SGKs are serine-threonine kinases showing high 
homology to Akt and share common downstream substrate with 
Akt [193, 197]. The regulation of SGKs is fast; the activation and 
degradation of SGK can occur in less than a half hour [194, 195]. 
The enzyme is activated by several factors including insulin, insu-
lin-like growth factor, serum, glucocorticoids and oxidative or me-
chanical stress [193, 196]. Upregulation of SGKs was observed in 
diverse pathologic conditions, like wound healing, diabetic neph-
ropathy, liver cirrhosis, cardiac fibrosis and heart failure [194, 195, 
198]. SGKs were demonstrated to inhibit apoptosis and enhance 
hypertrophic response in cultured cardiac myocytes [193].  

 SCN5A has been shown to be stimulated by SGKs in multiple 
ways [198, 199]. First, the kinase modulates the gating kinetics of 
the sodium channel. In Xenopus expression system SGK was dem-
onstrated to shift the inactivation curve to more positive voltages 
and the activation curve to more negative direction resulting in 
broadening of the window current [199]. In mouse cardiac myo-
cytes SGK shifted both activation and inactivation curves toward 
negative voltages resulting in a negative shift of the crossing point 

[198]. Second, upregulation of SGK increases sodium channel 
availability and thus the current density [198, 199]. The mechanism 
involves phosphorylation and reduced binding of ubiquitin ligase 
Nedd4-2 to PY motif of SCN5A. Previously, cortisol was shown to 
regulate the cardiac SCN expression in fetal sheep myocardium 
[200]. These observations raise the possibility that SGKs can be 
potentially important candidate for modulating INa,L. Surprisingly, 
this possibility has not been well studied. Das et al. reported sub-
stantial increase of INa,L in ventricular myocytes of transgenic mice 
with constitutively active SGK1. The increased INa,L coincided with 
lengthened AP, more frequent afterdepolarizations and increased 
propensity for ventricular arrhythmias. Ranolazine has been shown 
to normalize the AP duration and suppress both afterdepolarizations 
and arrhythmias [198].  

5.3. Cellular Metabolism 

 Metabolic activity of cardiac myocytes adapts to the momentary 
changes in the cardiac output, blood pressure, autonomic regulation 
determined by varying environment, physical activity or even emo-
tional state. Cardiac sodium channels has been shown sensitive to 
the metabolic state of the cell and modulated by pH, oxygen or 
metabolites. During myocardial hypoxia extracellular pH can drop 
as low as 6.0 [201], and cardiac sodium current is known to be 
modulated by these substantial increase in the proton concentration 
[70, 202-205]. There is a consensus on that acidosis reduces the 
magnitude and the decay of the INa,T. Furthermore, positive shift in 
voltage dependency of activation and inactivation was observed in 
Xenopus expression system [203-205]. Additionally, Jones et al. 
demonstrated an increase in the window current and deceleration of 
the time constant of slow inactivation in Xenopus oocytes. Based 
on these data they predicted AP lengthening at low pH in a com-
puter model [203]. Murphy et al. reported depolarizing shift in 
voltage dependency of activation, but not in the steady-state inacti-
vation in freshly isolated canine ventricular myocytes [70, 202]. In 
agreement with Jones et al., they observed the prolongation of AP 
at low pH, but they found that INa,L was reduced in both endocardial 
and epicardial myocytes [70].  

 Acute and chronic hypoxia is known to induce electric distur-
bances in myocardium leading to arrhythmia. Several studies ad-
dressed the effect of hypoxia on the late sodium current, and all 
observations employing wide variety of experimental models con-
sistently showed that hypoxia increases INa,L [11, 206-210]. Wang 
et al. studied the mechanism of hypoxia induced INa,L facilitation 
[206]. Recording single channel current they found increased burst 
mode activity following 15 minutes hypoxia that may explain the 
increased persistent sodium current. They also reported hyperpolar-
izing shift in the steady-state inactivation curve resulting in signifi-
cant reduction of INa,T and probably attenuating hypoxia induced 
facilitation of INa,L due to reduced window current. Interestingly, 
Wang et al. found that hypoxia shortens AP duration in spite of 
increased INa,L which indicate that other hypoxia sensitive ion chan-
nel(s) also contribute to reshaping AP in cardiac cells.  

 Hydrogen peroxide and free radicals were demonstrated to 
stimulate INa,L by several teams [127, 211-213]. In accordance with 
these observations, specific INa,L inhibitor ranolazine or TTX at-
tenuated the AP lengthening effect of H2O2 [213]. However, Erick-
son et al. showed that free radicals can directly activate CaMKII 
[214]; therefore CaMKII might be involved in INa,L facilitation in 
the presence of free radicals.  

 INa,L is modulated by wide variety of metabolites and second 
messengers. Poly-unsaturated fatty acids, like docosahexaenoic and 
eicosapentaenoic acids (DHA, EPA) were shown to substantially 
reduce both transient and late phase of INa [215]. The reduction 
develops from hyperpolarizing shift in the inactivation and activa-
tion curves decreasing the window current. An ischemic metabolite, 
lysophosphatidylcholine was also demonstrated to reduce INa,T, but 
effects on INa,L has not been addressed in those studies [12, 216]. 



1080    Current Pharmaceutical Design, 2015, Vol. 21, No. 8 Banyasz et al. 

Nitric oxide (NO) was found to facilitate INa,L by Ahern and co-
workers fifteen years ago; they proposed that nitrosylation of so-
dium channels within plasma membrane modify the gating of car-
diac sodium channel [217]. Since then the mechanism has been 
confirmed by Cheng et al. demonstrating that caveolin-3 mediates 
sodium channel nitrosylation [218]. 

5.4. Ubiquitylation  

 The number of sodium channels at the sarcolemma (therefore 
sodium current density) is determined by a delicate balance be-
tween expression/translocation and internalization/degradation of 
channel proteins. Covalent attachment of ubiquitin to lysine resi-
dues situated in specific position within the substrate proteins was 
shown to label membrane proteins, including cardiac sodium chan-
nels for internalization and degradation [219-223]. Ubiquitin is a 
small peptide present in all eukaryotic cells. Ubiquitylation is a 
multistep process achieved by specific enzymes responsible for 
activation, conjugation and ligation. Cardiac sodium channels are 
specifically recognized and ubiquitylated by Nedd4-2 an ubiquitin-
protein ligase resulting in reduction of channel density in the cell 
membrane, and thus downregulate INa. Furthermore, Nedd4-2 labels 
SGKs too decreasing the steady state level of the enzyme resulting 
in reduced phosphorylation of cardiac sodium channels. Interest-
ingly, activation of Nedd4-2 requires phosphorylation by SGK1, 
thus SGK1 forms a self-limiting regulatory loop with Nedd4-2 
[195]. 

5.5. Mechanical Stress 

 Myocardial wall tension is subjected to moment-to-moment 
changes during cardiac cycle, and ion channels embedded in the 
cell membrane experience varying mechanical stress. It is well 
established that cardiac sodium channels respond to mechanical 
stress with altered gating kinetics [50, 224]. Beyder et al. investi-
gated the mechanosensitivity of Nav 1.5 in expression model using 
cell-attached patch clamp configuration and characterized the 
stretch-induced modulation of INa [50]. Increased stretch of the 
patch resulted in a negative shift in both the inactivation and activa-
tion curves and decelerated recovery from inactivation. Interest-
ingly, the membrane stress increased the availability of channels 
under the patch, leading to increased peak current. Recently, the 
same group confirmed these observations on freshly isolated mouse 
ventricular cells [225]. Moreover, in the same publication authors 
demonstrated that ranolazine inhibits the mechanosensitivity of 
cardiac sodium channels in a dose-dependent manner. Further sup-
porting evidences on inhibitory effect of Ranolazine on mecha-
nosensitivity of Nav 1.5 has been obtained in cultured atrial myo-
cytes by the same team [226]. Ranolazine is antiarrhythmic drug 
known to target cardiac sodium channels and inhibiting the late 
current INa,L with high selectivity over the INa,T [44, 52, 128, 227, 
228]. Considering that myocardial wall stretch is known to play key 
role in arrhythmogenesis [229-231] these data may help to establish 
a new therapeutic strategy in antiarrhythmic pharmacology. Cur-
rently, pharmacological reduction of preload with diuretics and 
vasodilators represents the only therapeutic approach to reduce wall 
stress and prevent disease progression in arrhythmogenic right ven-
tricular cardiomyopathy [232, 233]. Reducing mechanical sensitiv-
ity of the electric system in cardiac myocytes may present a new 
therapeutic strategy. 

6. THE LATE SODIUM CURRENT IN HEART DISEASES 

 It is now well established that the upregulation of INa,L results in 
pathologic cardiac function including contractile dysfunction, ar-
rhythmia and structural heart disease [5, 6, 42, 45, 58, 79, 102]. 
There are several conditions (mutation, hypoxia, ischemia, carbon 
monoxide, CaMKII or angiotensin II activation, etc.) known to 
facilitate INa,L and leading to cardiac dysfunction [6].  

 

 There are two possible mechanisms to facilitate INa,L: increasing 
the channel density and altering channel gating. Increased expres-
sion of non-cardiac sodium channel isoforms were observed in 
postinfarction remodeled myocardium and pressure overload model 
[40, 234]. In the same time, altered channel gating was proposed as 
possible mechanism for increased INa,L in various diseased models 
[11, 38, 162, 206, 209, 235]. It is possible that facilitation of INa,L 
may not fully result from increased expression of non-cardiac chan-
nels in chronic heart disease. Myocardial hypoxia and increased 
expression is often present in different structural and functional 
heart diseases [180, 181]. Therefore current experimental data are 
insufficient to reliably isolate the consequences of altered subunit 
expression from changed gating mechanism in facilitation of INa,L in 
pathologic states. Interestingly, increased INa,L was reported in atrial 
fibrillation with reduced expression of Nav 1.5 and decreased INa,T 
[236]. 

 The impact of the sustained sodium current on cardiac function 
is complex. The current flowing through sodium channels during 
plateau is very small relative to the currents causing either the up-
stroke or terminal repolarization of AP. However, to understand the 
functional relevance of INa,L in cardiac function it is important to 
understand that (1) other currents flowing under the plateau have 
very low magnitude as well, therefore the contribution of INa,L to the 
profile of plateau is significant. Furthermore, (2) the amount of Na

+
 

entering into the cell significantly contributes to the intracellular 
sodium content of cardiac myocytes. The transient phase of INa is 
short with high peak; the majority (90-95%) of sodium ions passes 
the membrane in less than 5 ms. In contrast to that, the magnitude 
of the sustained part is less than 1% of the peak lasting for several 
hundred ms. Thus, in spite of the remarkable difference in the mag-
nitude, the amount of sodium entering into the cardiac myocytes 
during the transient and sustained phase of INa are comparable [237, 
238].  

6.1. INa,L and the Ion Homeostasis of Cardiac Cells 

 Plateau sodium current adds substantial amount of sodium to 
the total entry during electric cycle. When INa,L is enhanced, Na

+
 

influx can be increased several fold resulting in increased cytosolic 
sodium concentration. Sodium is extruded from the cells by 
Na

+
/K

+
-ATPase (NKA) with stoichiometry of 3/2 using one ATP 

molecule in each pump cycle. The KD for ATP and potassium are 1-
2 mM and 80-150 �M respectively; therefore, ATP or extracellular 
K

+
 concentration is not a limiting factor for NKA activity, because 

intracellular ATP and extracellular K
+
 concentrations are signifi-

cantly higher than these values [124]. In contrast to these, the KD 
for Na

+
 is in the range of 10-20 mM and the intracellular Na

+
 con-

centration falls to the range of 5-15 mM resulting in high sodium 
sensitivity for NKA. Thus, increasing cytosolic Na

+
 concentration 

stimulates NKA and increases ATP catabolism. Considering that, 
INa,L upregulation often coincide with ischemic/hypoxic conditions, 
the increased ATP utilization can worsen the energetic state of car-
diac myocytes depleting the ATP pools of the cell. Besides, ex-
perimental observations indicate that, in spite of the facilitation, 
NKA cannot keep cytosolic sodium concentration in the normal 
range and increased INa,L results in elevated cytosolic Na

+
 concen-

tration [126, 127]. 

 Elevated cytosolic sodium concentration shifts the equilibrium 
potential for Na

+
/Ca

2+
 exchanger facilitating reverse mode and in-

hibiting forward mode; hence, some of the extra sodium entered is 
converted to calcium [72, 124, 154, 239, 240]. Ca

2+
 is the key regu-

lator of the majority of functions in cardiac myocytes, including 
metabolism, electric activity, contractility as well as apoptosis [158, 
180, 181, 240-243]. Elevated cytosolic calcium leads to Ca

2+
 over-

load in sarcoplasmic reticulum resulting in contractile dysfunction 
and increased risk for arrhythmia [52, 244-248]. 
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6.2. Role of INa,L in Arrhythmogenesis 

 Acquired or inherited increase of INa,L is associated with en-
hanced risk for cardiac arrhythmia and inhibition of INa,L was dem-
onstrated to prevent or abolish arrhythmic electric activity of the 
heart [1, 3, 5, 6, 42, 58, 128, 245, 246]. There are multiple mecha-
nisms INa,L might lead to manifest arrhythmic activity.  

 First, increase of any inward current – like INa,L – during the 
plateau can cause AP prolongation, increasing the risk for early 
afterdepolarizations (EAD). EADs are documented to occur more 
frequently at long AP duration resulted from either increased in-
ward or decreased outward currents. EADS are slow membrane 
potential oscillations due to reactivation of inward currents during 
phase two and three of AP and implicated in triggered arrhythmias 
[249, 250]. The possible candidates for the reactivating currents are 
ICa,L, INa,L, and INCX. I has been postulated that augmentation of ICa,L 
or INa,L occurs by window mechanism [9, 98, 138]. Calcium over-
load was documented also to promote the generation of EAD but 
the mechanism is not completely understood [251, 252]. However, 
it has been proposed that spontaneous calcium release from sarco-
plasmic reticulum might facilitate INCX and induce membrane oscil-
lations [138, 249, 251, 252]. Horvath and his co-workers recently 
investigated the role of INa,L in generation of EAD [18]. They 
showed that facilitation of INa,L by Anemone toxin II prolonged 
APD and induced Ca

2+
 oscillations that led to EADs, but these ar-

rhythmogenic activities were eliminated by buffering cytosolic Ca
2+

 
with BAPTA. From these observations they concluded that INa,L 
may contribute to AP prolongation that favors the generation of 

EAD, but membrane oscillation arise from augmentation of INCX 
due to cytosolic calcium oscillations. 

 Second, upregulation of INa,L was shown to facilitate generation 
of spontaneous depolarizations developing at resting membrane 
potential (between two APs) and referred as delayed afterdepolari-
zations (DAD) [39, 253]. There is a consensus opinion on that 
DADs arise from spontaneous calcium release from the sarcoplas-
mic reticulum that facilitate INCX, a similar mechanism discussed 
previously with regard to EADs [254-257]. In this sense, INa,L does 
not provide the depolarizing power for the depolarization, but in-
ducing calcium overload ‘set the stage’ for spontaneous cytoplas-
mic Ca

2+
 oscillations [6]. 

 Third, an increase of INa,L is known to facilitate beat to beat 
variability and regional inhomogeneity of AP duration [8, 86, 212, 
235, 258]. Increased beat to beat variability results from reduced 
repolarization reserve and makes the heart more vulnerable to po-
tentially proarrhythmic prolongation of the APD [259]. Regional 
differences in AP duration are generally attributed to asymmetrical 
distribution of various ion channels [107, 260-265]. The transmural 
heterogeneity of INa,L was discussed previously. Increase in both 
beat to beat variability and transmural heterogeneity may result in 
increased prevalence of cardiac arrhythmias due to increased dis-
persion under certain (usually pathological) conditions [266, 267]. 

 Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia 
[268, 269]. It is known to cause electric remodeling of the atrial 
myocardium that leads to reduced L-type calcium current, potas-

Table I. List of pharmacons reported to inhibit INa,L  

Name� EC50� Effective cc.� Selectivity�

AZD1305� 4.3 �M [300]� � EC50 for INa,T: 66 �M [300]�

F15845� 5.3 �M [301]� � �

GS967� 0.13 �M [128]� � INa,T: 7.5% inhibition at 10 �M [128]�

KC 12291� 9.6 �M [302]� � 25% IK1 inhibition at 10 �M;  

42% Ito inhibition at 10 �M [303]�

R 56865� 200 nM [304]� � Binds to �1-adrenoceptors, 5-HT receptors, DHP receptors 

with Ki between 20-340 nM [305]�

RSD1235 

(Vernakalant)�

31 �M [306]� 30 nM [307]� EC50 for Kv1.5, Kv4.2 and Kv4.3: between 10-40 �M; IK1: 

1 mM; ICa,L: 220 �M [306]�

Amiodarone� 6.7 �M [283]� � EC50 for INa,T: 87 �M [283]; 

IKr: 2.8 �M [308]. Inhibits IK1 and IKs in concentration 

higher than 10 �M [309, 310] �

Flecainide� 3.4 �M [128]� � EC50 for INa,T: 84 �M [128]�

Mexiletine� 18 �M [311]� � EC50 for INa,T: 35 �M; 

No effect on ICa,L up to 100 �M [311]�

Ranolazine� 17 �M [128] 

 6 �M [227] �

� EC50 for INa,T: 1329 �M [128]; 

EC50 for IKr : 12 �M, INCX : 91 �M, ICa,L : 50 �M [227]�

Resveratrol� 34 �M [312]� � �

Sophocarpine� � 30 �M [313] 

20-80 �M [246]�

Inhibits INCX in concentrations higher than 20 �M [246]�

Wenxin Keli� 4 �M [299]� � EC50 for INa,T: 11 �M [299]�
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sium currents and AP duration [270, 271]. Interestingly, INa,T was 
found to be reduced while INa,L was facilitated in AF patients [236].  

6.3. INa,L and Structural Heart Disease 

 The most argued cardiac disorder linked to INa,L is dilated car-
diomyopathy (DCM) a progressive structural heart disease charac-
terized by reduced myocardial force generation and enlarged cham-
bers. In spite of the increasing volume of evidence that links 
SCN5A mutations to DCM, the mechanism how a defective ion 
channel function leads to structural disease remains unclear. The 
first observations that associated DCM to SCN5A mutation was 
published in 2004 and 2005 from two different groups [101, 272]. 
The strikingly new hypothesis that sodium channel gene mutation 
may lead to structural heart disease was challenged by Groe-
newegen & Wilde suggesting the role of another gene, different 
from SCN5A in DCM phenotype [273]. In the following years new 
SCN5A mutations were identified in DCM patients providing fur-
ther evidence that sodium chanellopathy can be associated with 
structural heart disease [103, 274]. In 2012 Gosselin-Badaroudine 
and his coworkers have shown that the mutation in these sodium 
channels resulted in a proton leak through an alternative pore not 
related to the Na

+
 path [275]. They proposed that acidification of 

cardiac myocytes may cause the DCM phenotype of these patients.  

7. THE LATE SODIUM CURRENT AS THERAPEUTIC 

TARGET 

 Several compounds are known to increase or inhibit INa,L, and a 
few of them are employed in clinical practice as antiarrhythmic 
drug. Compounds known to facilitate late sodium current are used 

exclusively as pharmacological tool for research because they pro-
mote arrhythmogenesis that prevents their clinical application [1, 
2]. The most frequently used INa,L activators seen in research papers 
are Veratridine and Sea Anemone Toxin (ATX-II); ATX-II is more 
specific than Veratridin [18, 126, 128]. Other activators like oua-
baine or Pyrethroids are also used for research purposes but held 
more ‘dirty’ [6, 126]. 

 Pharmacological suppression of plateau sodium current was 
shown beneficial to reduce contractile dysfunction and arrhythmic 
activity in several pathologic model [46, 225, 245, 276-279]. Since 
INa,L is the non-inactivating component of INa,T, it is inhibited by 
sodium channel blockers including quinidine, mexiletine or local 
anesthetics like lidocaine. It is very likely that beneficial effects of 
traditional Class I sodium channel blockers are exerted via INa,L 
inhibition. However, Class I drugs display strong proarrhythmic 
effects and increase mortality; this led to the opinion that treatment 
of arrhythmias with sodium channel blockers is harmful. Thus, 
research has shifted toward selective INa,L blockers with no inhibi-
tory effect on INa,T. Some of the classic sodium channel inhibitors 
including lidocaine, mexiletine or flecainide (Fig. 3) display 5-10-
fold INa,L selectivity over INa,T (see Table 1), but these drugs signifi-
cantly suppress conductivity in the therapeutic range promoting 
reentry type arrhythmia [280-282]. Mixed ion channel blocker 
amiodarone has outstanding INa,L/INa,T selectivity amongst tradi-
tional antiarrhythmic drugs [283], but chronic amiodarone is docu-
mented to carry severe side effects preventing its use in long term 
therapy [284-293].  

 The first, highly selective INa,L blocker with no known adverse 
effects was Ranolazine, an anti-ischemic, antianginal drug [278, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Chemical structures of INa,L inhibitors.  
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279]. Ranolazine (Fig. 3) effectively inhibits late sodium current 
with 17 and 1300 �M EC50 for INa,L and INa,T respectively [128]. 
Apart from the primary INa,L inhibitory effect, Ranolazine was also 
demonstrated to decrease calcium overload, improve mechanical 
dysfunction and reduce mechanosensitivity of sodium channel [225, 
226, 245]. However, Ranolazine reduces IKr, INCX and ICa,L with 
EC50 value between 12-90 �M and blocks catecholamine receptors 
too [294, 295]. The success of Ranolazine stimulated research to 
develop highly selective INa,L blockers with less side effects (see 
Table 1).  

 Recently a new promising molecule, compound GS967 (Fig. 3) 
was shown to attenuate ischemia and methoxamine-clofilium in-
duced arrhythmia in rabbit. GS967 is more potent and effective 
inhibitor for INa,L than Ranolazine with higher EC50 for IKr [128].  

 Sodium channels show higher affinity for sodium channel 
blockers in activated or inactivated, but not in closed state [296]. 
Diastolic phase is shortened in AF which favors drug binding to the 
channel resulting in substantial selectivity for the drug to fibrillating 
atrium over ventricle. When heart returns to sinus rhythm, diastolic 
period lengthens and the drug dissociates from the channel remov-
ing the inhibition. Furthermore, Ranolazine was shown to inhibit 
INa,L more effectively in AF than in sinus rhythm myocytes [236]. 
Though, data from large scale double-blind, placebo controlled 
clinical studies are not available, preliminary clinical studies with 
AF patients showed that Ranolazin treatment appeared more effec-
tive in treating AF than that of standard amiodarone therapy [4, 
297, 298]. 

 An interesting work was published in 2013 by an international 
team in PACE [299]. Xue at al. studied the effect of a Chinese herb 
extract, Wenxin Keli on ventricular arrhythmias in rabbit model. 
Wenxin Keli is used in traditional medicine as treatment for angina 
and various arrhythmias. Authors showed in their paper that 
Wenxin Keli suppresses afterdepolarizations and inhibits INa,L in 
dose dependent manner. However, the specific component of the 
extract responsible for the beneficial effects is not identified. 
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