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Abstract
Variability is inherent in any population, regardless whether the population comprises

humans, plants, biological cells, or manufactured parts. Is the variability beneficial, detri-

mental, or inconsequential? This question is of fundamental importance in manufacturing,

agriculture, and bioengineering. This question has no simple categorical answer because

research shows that variability in a population can have both beneficial and detrimental

effects. Here we ask whether there is a certain level of variability that can maximize benefit

to the population as a whole. We answer this question by using a model composed of a pop-

ulation of individuals who independently make binary decisions; individuals vary in making

a yes or no decision, and the aggregated effect of these decisions on the population is quan-

tified by a benefit function (e.g. accuracy of the measurement using binary rulers, aggregate

income of a town of farmers). Here we show that an optimal variance exists for maximizing

the population benefit function; this optimal variance quantifies what is often called the “right

mix” of individuals in a population.

Introduction
Variability is inherent in all populations. In manufacturing, variability has been called“the
enemy of mass production” [1] and decades of research and effort have gone into reducing var-
iability between parts [2, 3]. On the other hand, variability between individuals is the sine qua
non of biological evolution. Whether variability in a population is beneficial, detrimental, or
inconsequential is not often clear. Agriculture provides some classic examples. The potato
blight epidemic of 1845–1852 that caused massive starvation in Ireland [4] occurred in part
because of overdependence on a narrow range of species that happened to be susceptible to dis-
ease. Yet the detrimental effects of narrow diversity are often outweighed by the benefits of
product uniformity and high productivity. Intuitively, it is plausible that there might be an
optimal level of variability or diversity among individuals that could maximize the total popu-
lation benefit in both productivity and adaptability.
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Here, we analyze how the variance between individuals can affect some measure of benefit
to the population as a whole. The model we use is a population composed of heterogeneous
individuals that make binary decisions; individuals vary in making a yes or no decision, and
the aggregate effect of these decisions on the population is quantified by a benefit function.
Such a model can be used to describe various populations, such as a town of farmers with each
individual deciding on whether or not to plant tulips that year, or a population of binary mea-
suring devices with distributed thresholds. The benefit function is defined in a way to quantify
some form of benefit to the population. The benefit function for the farmer example is the
aggregate income of all farmers in town; for the measuring devices, it is the accuracy of mea-
surement. Here we show that an optimal variance exists that maximizes the population benefit
function.

Methods and Analysis

Mathematical framework
To make the quantitative link between variability in a population and population benefit we
need to (a) model how individuals in a population behave and (b) quantify the effects of the
individuals’ behavior. We use a simple behavioral model where an individual makes a binary
decision based on whether a signal, called L, exceeds a threshold. Variability is introduced by
assuming that the threshold differs between individuals. The probability distribution of indi-
vidual thresholds, or simply the threshold distribution, is ϕ(L, s), where s is the measure of
variability.

The effect of all the individual’s behavior is measured by the population benefit function B
(L, s), which depends on both the signal level (L) and the variability (s).

The threshold distribution ϕ(L, s) and the population benefit function B(L, s) constitute our
mathematical framework to study how variability affects population benefit. The problem we
will solve is this: For a given signal L and threshold distribution ϕ(L, s), what level of variability s
maximizes the population benefit B(L, s)?

Sloppy Rulers
To answer this question, we consider the problem of measuring the length of an object with a
population of binary rulers. We start with this example for three reasons. First, in this case the
meaning of ϕ(L, s) and B(L, s) are easily understood. Second, this measurement problem
requires us to develop a method, called the Sloppy Algorithm, that finds the optimal value of
variability s that maximizes the benefit function B(L, s) for any L. Third, there is a surprising
equivalence between making accurate measurements with binary rulers and maximizing
income in a town of farmers.

The problem is to measure an object of length L where 0� L� 1 using a population of N
binary rulers of unit length. These binary rulers have only a single mark engraved approxi-
mately about the midpoint. Because the position of the mark varies from ruler to ruler they are
called “sloppy rulers.”While making measurements with such rulers might seem contrived
and unrealistic, this process, in fact, always occurs when determining the least significant digit
of any measuring device. For example, in an 8-bit analog-to-digital converter (ADC) with a 5
volt full-scale range, the quantal step size is 5V/256 = 19.5 mV, which we can take as our unit
length. L is now some voltage between 0 and 19.5 mV scaled between 0 and 1. The last bit will
be set to 0 or 1 depending on whether L is less than or greater 0.5. In an ADC the scaled voltage
at which the bit switches between 0 and 1 (in this case 0.5) is called the threshold voltage. By
analogy, we now call the graduation mark on a sloppy ruler the threshold.

Optimal Variability
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It is important that the threshold of each of the N rulers be distributed approximately about
the midpoint. If the mark on all N rulers were exactly at 1/2 (as in an ADC) and L happened to
be 0.4 then all we can say is that the object has length slightly less than 1/2. But as we will show,
if the thresholds are randomly distributed in “proper” way then L can be accurately determined
with any degree of resolution. The proper way will be the distribution with optimal variability.

The length of an object using the sloppy rulers is estimated as follows: Align the left edges of
the object and ruler. Each ruler i casts its “vote” of λi = 0 (vote no) or λi = 1 (vote yes) depend-
ing on whether the right edge of the object is below or above the threshold at ρi, respectively.
The threshold distribution ϕ is the distribution of threshold locations, ρi. We initially assume ϕ
is the normal distribution with mean μ = 1/2 and standard deviation SD = s. The estimate of L,
�l, equals the number of yes votes, n, multiplied by 1 (length of the ruler), divided by the total

number of votes N, �l ¼ ðn� 1Þ=N . We allow the position of the graduation mark to range

from −1 to1 (possibly running off the ruler). Because the ruler length is 1, �l numerically
equals the probability that L is greater than ρ, P(L> ρ), which as N!1, is

lim
N!1

�l ¼ PðL > rÞ ¼
Z L

�1
�ðz; m ¼ 1=2; sÞ dz ¼ 1

2
1þ erf

ffiffiffi
2

p ð2L� 1Þ
4s

� �� �

� QðL; sÞ
ð1Þ

This equation gives the relationship between the estimate �l and the variability s.
We now define a benefit function. The benefit function reflects the worth or merit we

ascribe to �l and so may be defined in many ways. When measuring length, a natural definition

of benefit would indicate how close �l is to the true length L. One such population benefit func-
tion, B, is given by

BðL; sÞ ¼ 1� jQðL; sÞ � Lj
�max

¼ 1� 2jQðL; sÞ � Lj: ð2Þ

�max is defined as the supremum (least upper bound) of L1 (the 1-norm) errors

�max ¼ sup QðL; sÞ � Lj j; L 2 ½0; 1�; s � 0f g: ð3Þ

From the definition of Q it follows that �max = 1/2 so B(L, s) ranges from 0 to 1. The population
of rulers that has the optimal level of variability, s�, estimates the length exactly. Perfect accu-
racy and maximal benefit are achieved when s� solves the fixed point problem

QðL; s�Þ ¼ L: ð4Þ

The Sloppy Algorithm
At first glance there appears to be a logical problem of needing to know L in the first place in
order to get s�. However, we escape this dilemma by proving that for any L, s� can be found

iteratively and that the estimate �l converges monotonically to L using the following “Sloppy
Algorithm”:

1. Choose s0 arbitrarily.

2. Compute �l1 ¼ QðL; s0Þ.
3. For any i> 1,

choose si such that Qðli; siÞ ¼ li: ð5Þ

Optimal Variability
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The solution to Eq (5) is

siðliÞ ¼
ffiffiffi
2

p ð2li � 1Þ
4erf�1 ð2li � 1Þ : ð6Þ

4. The next value λi+1 is computed from

�l iþ1 ¼ QðL; siÞ ð7Þ

Steps [3] and [4] are the recursion rules and are repeated as many times as desired.
Fig 1 illustrates how the Sloppy Algorithm works. The leftmost drawing in Fig 1A shows 10

rulers with thresholds (short vertical lines) normally distributed about the center with stan-
dard deviation of s0 = 0.1. For this first step the value of s0 can be any value>0. For step 2 we
compute λ1 by counting the number of times the right edge of the object (gray bar), whose
length is L = 0.3, lies to the left of all the thresholds. In this case n = 1 so λ1 = 0.1. For step 3, we
compute s1 by solving Q(λ1, s1) = λ1, using Eq (6) or reading off the graph of s(L) in Fig 1B,
which gives s1 = 0.312. For step 4 a new set of rulers is created with thresholds drawn from a
normal distribution with SD s1 (middle set of rulers) and we get the new estimate λ2. In this
case, the right edge of the object lies above the threshold of two rulers so n = 2 and λ2 = 0.2.
Repeating step 3 we get s2 = 0.356 based on λ2 = 0.2. Repeating step 4 (rightmost set of rulers)
gives n = 3 so λ3 = 0.3, which happens to be the correct length. Steps 3 and 4 can be repeated as
many times as desired. Fig 1B shows how si and λi+1 are linked stepwise and the convergence
of the algorithm.

Fig 2A and 2B show the convergence of �l i and si for 5 different initial values of s0 that range
from 10−5 to 1. In this case the true value of L is 0.723 (chosen arbitrarily) so s�(0.723) = 0.377;
their values are shown by the black dashed lines. Notice that regardless of the initial value of s0,

within 2 or 3 iterations �l i already converges to within a few percent of L.
It can be shown that an ensemble of measuring devices is mathematically equivalent to a

single device making multiple measurements. To illustrate this, we show, in Section 4 in S1
File, that a person, embedded in the Sloppy Algorithm iteration loop, can determine the abso-
lute gray scale value of an image. The convergence to the correct gray scale value, shown in Fig
E in S1 File, is similar to Fig 2.

The Sloppy Algorithm is not limited to ϕ being normally distributed and the right hand side
of Eq (4) can be replaced by any strictly monotonically increasing function f(L) bounded by 0
and 1. We prove that the Sloppy Algorithm converges everywhere monotonically when f(L) =
L and ϕ is the normal distribution in Section 1 in S1 File. Fig 2A and 2B show λi and si converg-
ing monotonically to the correct solution.

Using the Sloppy Algorithm to achieve high-resolution measurements
from low-resolution instruments
It may be surprising that a population of sloppy rulers can make accurate, high resolution mea-
surements even though each ruler, having just a single mark, is of the lowest possible resolu-
tion. Sloppy rulers, when combined with the Sloppy Algorithm, provide a useful method to
obtain accurate, high-resolution measurements. This method differs from dithering [5, 6],
which is also used to increase measurement resolution. Section 5 in S1 File explains how they
differ mathematically and the different arenas where they are useful.

There are two costs in using sloppy rulers. First, high resolution measurements require
many rulers. To get three-digit resolution requires N� 1000 rulers. Second, accuracy requires

Optimal Variability
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using the correct s, which the Sloppy Algorithm finds iteratively. As Fig 2 shows, it can take
from one to three iterations to get an accurate estimate of L.

Fig 3A shows what happens if the wrong value of s is used. The x-axis is the true length L
and the y-axis is the estimate of L given by Q(L, s). Every L requires a specific s�(L) that gives
the correct estimate Q(L, s�) = L and this s� is found using the Sloppy Algorithm. The black cir-
cles are these estimates and they fall exactly on the line L = L. Each solid curve shows the esti-
mate made with a fixed value of s; the estimates are all wrong except at L = 1/2 and at most two
other values of L. The red curve, however, merits special attention because it shows a “short
cut” to find reasonably accurate solutions without the cost of iterating.

Fig 1. Schematic of recursion rules of the Sloppy Algorithm. (A), Width of gray bar is to be measured with rulers of unit length (horizontal lines). Vertical
tick lines are the graduation marks. Note that a graduation mark can lie beyond the edge of the ruler as seen in the middle and rightmost set of rulers. (B), s,
solves the fixed point problemQ(L, s) = L. Arrows show how si and λi+1, generated by this ruler example, are linked to each other and how the algorithm
converges.

doi:10.1371/journal.pone.0143475.g001
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The “magic number distribution”
Although no single value of s produces an exact estimate for all values of L, we see that the red
curve in Fig 3A is close to the unit slope line except near 0 and 1. This curve was generated
using the standard deviation sm called the “magic number.”We derive the value of the magic

number, sm ¼ ffiffiffi
2

p
=4 	 0:35 in Section 2 in S1 File. We call the distribution ϕ(L, sm) themagic

number distribution.
The magic number distribution is important because this single distribution could replace

the infinite number of distributions (indexed by s�(L)) needed to get perfect benefit. To assess
how well the magic number distribution can do this we need to gauge how close a distribution

Fig 2. Convergence of the Sloppy Algorithm.Convergence of �l i (A) and si (B) when the Sloppy Algorithm
was used with different initial values of s; s0 = 10−5, light green, square; magic number, red, circle; 0.5, green,
up-triangle; 0.7, blue, diamond; 1.0, magenta, down-triangle. Dashed black line marks the correct values of
L = 0.723 and s* = 0.377.

doi:10.1371/journal.pone.0143475.g002
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gets to being perfect for all L. This gauge is called the performance, P(s), defined as the average
of B(L, s) over all values of L

PðsÞ ¼ 1�
R 1

0
jQðL; sÞ � Lj dLR 1

0
�max dL

¼ 1� 2

Z 1

0

jQðL; sÞ � Lj dL: ð8Þ

Like B(L, s), P(s) ranges between 0 (worst performance) and 1 (perfect performance).
P(s), shown in Fig 3B, is maximized at the magic number (red circle). The performance at

the magic number is 97% of the maximum value of 1. Perfect performance is impossible with a
single distribution. However, the magic number distribution is the optimal single distribution
that best approximates the infinitude of exact solutions obtained by the Sloppy Algorithm.

Fig 3. Sloppy rulers without Sloppy Algorithm. (A), length estimate (Q(L, s)) when s is fixed to 0 (light
green), 0.1, 0.2, magic number (red), 0.4, 0.5, 0.7 (blue), 1 (magenta), and 2. Perfect fit falls on the diagonal
line (circles). (B), performance P(s) given by Eq (8). Maximum occurs at the magic number

ffiffiffi
2

p
=4 	 0:35 (red

circle).

doi:10.1371/journal.pone.0143475.g003
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This means that a population of sloppy rulers drawn from the magic number distribution can
make good estimates of L with high resolution (given enough rulers) without iterations. This is
of practical importance as it might be very difficult to manipulate the underlying variability of
the threshold distribution even once, much less iteratively. Manipulating the threshold distri-
bution is easy with rulers or voltage comparators (used in ADCs) but when the individuals are
people manipulating thresholds might be difficult though possible [7].

Because the magic number distribution gives a good estimate for almost all L, starting the
Sloppy Algorithm loop using sm as the initial guess produces an initial estimate λ0 that will be
almost always close to the correct value. This is shown by the red traces in Fig 2 where sm was
used as the starting guess.

Optimizing variability for maximum benefit: An economic example
Measurements with sloppy rulers might not appear to have any bearing on how diversity of
crops or people affect population benefit but we will show there is a very close relationship
between making accurate measurements and maximizing aggregate income of the population.

To better understand how variability affects population benefit and performance, imagine a
town of farmers who independently choose to plant tulips or the less valuable beans. One
might initially predict that every farmer working for his/her own best interest would plant
tulips. However, when faced with the uncertainty that the tulip market might be glutted, some
farmers might choose to grow beans given its certain marketability. Let us assume that a farmer
overcomes his/her concern for a tulip glut and plants tulips when the demand for tulips exceeds
his/her risk threshold. Some farmers are risk-takers, others are risk-averse. Assuming there is a
distribution of risk threshold in the farmer population, we ask what is the optimal level of
threshold variability that maximizes the aggregate income of all the farmers. The aggregate
income might not be important to the individual farmer but is important to the population,
that is, the town. The larger the aggregate income, the more the town flourishes.

Define the benefit ~B, as the revenue collected by a town based on the following assump-
tions: (a) the income to the town increases at a rate of b1 per tulip up to the market demand D
but receives no income for the tulips in excess of the demand. (b) Farmers not planting tulips
plant beans whose value per farmer, b2, is less than that of tulips. Planting tulips incurs an
opportunity cost by forgoing other activities such as planting beans. (c) A penalty, b3, is
assessed per tulip for wasted resources in producing a number of tulips that is above or below
the demand.

Suppose each farmer can produce β tulips; the town of N farmers can fulfill a maximum
demand Dm = Nβ. The number of tulip farmers needed to exactly meet the demand D is n� =
D/β. Define L to be the ratio of demand to maximum demand, L = D/Dm (0� L� 1), so D =

βNL. The normalized benefit B is defined as the ratio of benefit ~B to maximum demand

BðL; nÞ �
~BðL; nÞ
Dm

¼ HðnÞn� Hðn� 1Þðn� 1Þ½ �Lb1

þ b2
b
ð1� LnÞ � Lj1� njb3

ð9Þ

H is the Heaviside function. ν is the ratio of the number of farmers planting tulips, n, to the
number needed to meet the demand, ν = n/n�. We get an important interpretation of ν by
rewriting it as ν = NQ(L, s)β/(LNβ), which is the output to demand ratio. The first term on the
right hand side of Eq (9) is the income derived from tulips; it increases linearly until ν = 1 then
flattens because the town receives nothing by producing more tulips than demanded. In the
second term, 1 − Lν is the fraction of farmers planting beans. We assume that the farmers earn
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more by planting tulips than beans so βb1 > b2. The third term is the penalty for over- or
under-producing tulips. Note that B(L, ν) is maximized when ν = 1, when tulip output exactly
matches demand. Fig 4C shows the benefit landscape B(L, ν). The thick white line at ν = 1
demarcates the ridge of maximal benefit.

Fig 4. Farmer example. (A) Probability density function (ϕ) of farmers’ sensitivities. s = 0.01, green (solid, left axis); magic number, red (dashed, right axis);
0.8, blue (dash-dot, right axis). (B) Farmers output relative to demand. Solid black line shows perfect matching between output and demand. Curves’ colors
and line patterns match those in A. (C), benefit landscape, B(L, ν). Thick white line lies on the ridge where B is maximized. Cyan curve near the L-axis is
where B = 0; B < 0 for points below the curve (closer to L-axis) and B > 0 above the curve. Other colored curves are the benefits derived from farmer tulip
output shown in panel (B). Black, Sloppy Algorithm; red, s = magic number; green, 0.01; and blue, 0.8. (D) Performance as a function of population variability
s. Circles mark s = 0.01 (green), magic number (red), and 0.8 (blue).

doi:10.1371/journal.pone.0143475.g004
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To link the benefit function to the farmer threshold distribution, suppose that each farmer
independently decides whether to plant tulips or beans. The farmers’ decisions are based on
their risk threshold, which we assume is normally distributed about the mean of Dm/2 with
standard deviation s 
 Dm. Eager farmers start planting as soon as there is any demand while
sluggards hold off until the demand becomes high. The fraction of farmers whose sensitivity is
less than L is Q(L, μ = 1/2, s). The number of tulip planters is then n = NQ(L, s) (where μ = 1/2
is understood) so ν = NQ(L, s)/NL, which equals the ratio of the town’s tulip output to the
demand. Because B(L, ν) is maximized when ν = 1, when output equals demand, it follows that
the optimal variability s� solves Q(L, s�) = L. This fixed point problem is identical to that of the
ensemble of sloppy rulers (Eq (4)). This means that the problem of getting accurate measure-
ments with sloppy rulers is identical to the problem of efficient labor allocation in this simple
economy.

Just as a population of sloppy rulers whose graduation marks have optimal s� variability can
estimate the value of L exactly, a population of farmers whose sensitivities have variability s�

will produce exactly the amount of tulips as the market demands. For every demand L there is
a unique optimal variability in the farmers’ sensitivity s�(L) that results in a perfect matching of
output to demand. If the threshold distribution can be altered with appropriate rewards or
punishments [7], it is possible to use the Sloppy Algorithm to adjust s so that the collective out-
put of the town’s farmers exactly matches the demand. However, this may be neither practical
nor necessary. As with the sloppy rulers, if the farmers’ threshold distribution is the magic
number distribution then their collective tulip output would almost exactly match the demand
and thereby nearly maximize the benefit to the town. Importantly, this matching of output to
demand occurs spontaneously by individual farmers making independent decisions, without
needing a manager to dictate how many farmers in the town should plant tulips.

The benefits of optimal variability
To see how variability amongst farmers affects the collective benefits, consider three towns hav-
ing farmers with different risk threshold distributions shown in Fig 4A. The farmers’ output
(Q, black line) relative to the demand (L) is shown in Fig 4B. In the town with a homogeneous
population (green curves in Fig 4A and 4B), the farmers work in lock step and produce no
tulips when the demand is low and too much when the demand is high. The benefit to the
town is shown by the green trace on the benefit landscape in Fig 4C. Although this town pro-
duces no tulips when the demand is very low (L< 0.2) the town derives some positive benefit
by planting beans (indexed by b2). For more moderate demand (0.2< L< 0.5) the penalty for
not producing tulips (the b3 term) outstrips the income from beans and the town suffers a defi-
cit (B< 0, green curve dips below B = 0 indicated by the cyan-colored curve). Once the
demand exceeds 0.5, all the farmers in this town plant tulips. The benefit increases but overpro-
duction occurs (Fig 4B). The net benefit is submaximal because overproduction is penalized
and, because all farmers are planting tulips, the town forfeits income from beans.

In contrast, the town of farmers with an overly broad distribution of risk thresholds (Fig 4A,
blue dot-dashed curves) produces too much when the demand is low and too little when the
demand is high (Fig 4B). The benefit this town derives is submaximal (blue curve, Fig 4C)
because it it penalized for overproduction at low demand and also penalized for underproduc-
tion of valuable tulips because too many farmers plant the less valuable beans.

The town of farmers with the magic number distribution (red, dashed curve, panel Fig 4A)
outputs tulips in near perfect accord with demand (Fig 4B) and the benefit (red-white curve in
Fig 4C) is close to the theoretical perfect line except when the demand is very low because then
too many farmers plant tulips.
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To quantify how the town’s benefit changes with s, we define the performance P(s) as the
ratio of the integral of the benefit (Eq (9)) over all L for a given s to the maximal achievable
benefit,

PðsÞ ¼
R 1

0
B L; nðsÞð Þ dLR 1

0
B L; nðs�ðLÞÞð Þ dL : ð10Þ

P(s) ranges from 0 (zero income) to 1 (maximal achievable income). P(s) is shown in Fig 4D.
The town with the magic number distribution (red circle) performs the best with P(sm) = 98%.
By contrast, the homogeneous town (s = 0.01, green circle) has a performance 67%, and the
overly diverse town (s = 0.8, blue circle) has a performance of 83%.

Optimal variability depends on the population benefit function
We can intuitively understand how a group of people who function well to accomplish one
goal might perform poorly when given another goal. Here we quantify how performance
changes when the benefit function is redefined. The key result of this section is that the optimal
level of variability depends on the benefit function.

Let us define a new benefit function

BðL; nÞ ¼ f ðLÞ
L

n� n2

2
; ð11Þ

where L and ν have their same meaning as in the farming example. Differentiating B with
respect to ν shows that B is maximized along ν = f(L)/L. This implies that the population output
is optimal when the variability s� solves Q(L, s�) = f(L). For both the ruler and farming cases, f
(L) equaled L. Now suppose that f(L) is the cubic function f(L) = L − (γ/2)L 
 (L − 1/2) 
 (L − 1)
for 0� γ� 4 (these constraints keep f(L)�0). s� is found for any L using the Sloppy
Algorithm.

The benefit landscape is shown in Fig 5A. The black curve shows the ridge where B is maxi-
mal. To achieve maximum benefit s� must be used, that is, for every demand L a different pop-
ulation must be used. As with the farmers, population diversity might not be practically
changeable. Therefore we would like to see if there is a single distribution that produces near
maximal benefit for all L. In other words, is there a magic number distribution?

In the case where f(L) = L and ϕ is normal, we could determine the magic number sm analyt-
ically. In other cases, such as the one considered now, sm is defined as the value that maximizes
the performance P(s) (Eq (10)) and is found numerically.

Here, it turns out that sm = 0.242 and ϕ(L, s = 0.242) is shown in by the red trace in Fig 5B.
The output Q(L, sm) (red trace in panel C) for this magic number distribution matches very
closely the ideal output Q(L, s�) (black trace). The benefit, shown by the red-white curve in Fig
5A, deviates significantly from maximal only when the demand is low. The performance of this
magic number distribution is 0.94.

Suppose the town of farmers with the magic number distribution (sm ¼ ffiffiffi
2

p
=4 	 0:35) that

fared well with the benefit function defined by Eq (9) is now evaluated with the new benefit
function (Eq (11)). How would this town fare? This town’s distribution and output are shown
by the blue traces in Fig 5B and 5C. The benefit (blue curve in Fig 5A) deviates markedly from
maximal. This town’s performance was 0.98 for the earlier benefit function (Eq (9)), but for the
new benefit function, its performance is a paltry 0.037. For this new benefit function, this town
is too diverse (sm = 0.35). A modest reduction in the variability to sm = 0.242 (making the
town’s farmers slightly more homogeneous) will boost the town’s performance 25-fold to 0.94.
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This example shows that the optimal level of variability in a population depends strongly on
the benefit function. A population that is optimally diverse for one benefit function might do
very poorly when the definition of benefit changes.

Optimal variability depends on the threshold distribution
In this section we show that performance depends not only on the benefit function but also
on the type of underlying threshold distribution. Up to now we assumed that the threshold
distribution was normal. However, the lognormal distribution occurs frequently in biology
[8, 9]. For example, mRNA [10] and protein levels [11, 12] are distributed lognormally.

Fig 5. Benefit function determines optimal distribution. (A), benefit landscape defined by Eq (11) when f
(L) is cubic (γ = 4). (B), normal distributions with s = 0.242 (red, dashed curve) or 0.354 (blue, dot-dashed
curve). The former is the magic number for this benefit function while the latter is the magic number of the
benefit function in the tulip farmer case. (C) shows the corresponding outputs of these populations; black
curve is f(L). Sloppy Algorithm output matches f(L) exactly. Heavy black curve in panel (A) lies along the ridge
of maximal benefit. Red (with white dots added for clarity) and blue curves on the benefit landscape are the
benefit corresponding to the outputs in panel (B). (D), benefit landscape defined by Eq (11) when f(L) is
sigmoidal. (E), magic number lognormal (red, dashed curve) and magic number normal (blue, dot-dashed
curve) population decision models. The magic numbers are sm = 0.559 (shape factor) for the lognormal and
sm = 0.271 (standard deviation) for the normal distribution. (F), outputs from corresponding distributions;
black curve is f(L). Heavy black curve in panel (D) mark the ridge of maximal benefit. Red (with white dots)
curve is the benefit for the lognormal distribution and the blue curve is for the normal distribution. Cyan-
colored curves in (A) and (D) show where B(L, ν) = 0; points closer to the demand axis are positive.

doi:10.1371/journal.pone.0143475.g005

Optimal Variability

PLOS ONE | DOI:10.1371/journal.pone.0143475 December 9, 2015 12 / 17



Furthermore, the magnitude of a cellular response is often a sigmoidal function of the signal
amplitude. We therefore use the benefit function given above (Eq (11)) where f(L) is now the
sigmoidal function Ln/(0.5n + Ln). We compare how two threshold distributions, lognormal
and normal, fare with this benefit function. The Sloppy Algorithm will find the optimal
shape factor and the standard deviation, for the lognormal and normal distribution respec-
tively, that maximizes the benefit function. When these optimal values are used the output is
given by the black trace in Fig 5F and the benefit is maximal as shown by the black curve in
Fig 5D.

As before we would like to replace the continuum of threshold distributions that give perfect
benefit (B(L, s�) = 1) with a single distribution that gives good performance. Magic numbers
were calculated for both models. For the lognormal distribution, the magic number for the
shape factor is sm = 0.559; for the normal distribution, the magic number is sm = 0.242. The red
trace in Fig 5E is the lognormal magic number distribution and the blue trace is the normal
magic number distribution. The output for the lognormal distribution (red trace in Fig 5F) is
very close to the optimal (black trace) while the output of the normal distribution (blue trace)
deviates considerably. The corresponding benefits are shown by the red-white and blue curves
in Fig 5C. Consonant with near perfect output, the performance of the population with the log-
normal distribution is 0.999. The normal distribution population’s performance is only 0.727.

What accounts for the differences in performances of these two distributions? The lognor-
mal distribution works well because the function Q(L, sm) using the lognormal “looks like” the
sigmoidal f(L) while Q(L, sm) using the normal distribution does not “look like” f(L). By “looks
like” we mean close in the L1 norm (see Section 3 in S1 File).

This example shows that for a given benefit function, there might be no single population
distribution of a particular type (normal in this example) that performs well. However, another
type of population distribution (lognormal here) might work very well. Whether it is feasible to
shape the population decision model will depend, of course, on the nature of the population.

Discussion

Reframing the diversity debate
What is the impact of variability or diversity in a population? This question has profound
implications for industry, agriculture, bioengineering, and also for social institutions. Reason-
able and compelling arguments have been made to support the beneficial effects of either diver-
sity or homogeneity in a population. For example, some have called for supporting a diverse
population of computer operating systems to thwart the widespread infection by computer
viruses and worms [13, 14]. Others have countered that having a few operating systems allows
programmers to concentrate their efforts to reduce vulnerabilities to cyber-attacks in these few
[15]. Similarly, agriculture and forestry reap the benefits of product uniformity, high yields,
and ease of management by using a small range of species. But catastrophic failure can occur
should these few species succumb to disease or pests [4, 16–18]. An economy based on a
broader diversity of crops is unlikely to fail catastrophically but might not enjoy the benefits of
high productivity. The question on the value of diversity in society has sparked intense and
often contentious social and political debates. The landmark Supreme Court decision of
Regents of the University of California v. Bakke (438 U.S. 265 (1978)) hinged on the principle
that a diverse student body is essential to the quality of higher education. But as with comput-
ers and agriculture, either broad or narrow diversity may bring trade-offs. A study by Putnam
showed that broadly diverse communities had lower trust amongst its citizens than less diverse
ones [19], but greater creativity had also been seen in more diverse groups [20, 21]. Another
study by Watson et al. [22] showed that in the workplace, heterogeneous groups initially had
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more difficulty working together but after seventeen weeks they surpassed the homogeneous
group at problem identification and generating alternative solutions.

Is it better to have diversity or homogeneity? The often contentious debate about the value
of diversity in the workplace, schools, and society often stems, in part, from the Procrustean
attempt to force the effects of diversity into a good-or-bad dichotomy. We argue that this is the
wrong question. Instead, the proper and useful question is “What level of variability maximizes
population benefit?”

To our knowledge only a few studies have addressed this question. Sih andWatters [23]
measured the mating activity in a population of water striders as a function of the proportion
of inactive, or moderately aggressive, or hyper-aggressive males in a group. They found that
mating activity (a type of benefit) was a hump-shape function of the aggressiveness level,
which is qualitatively similar to the performance curves we show in Figs 3B and 4D. Groups
dominated by inactive males did not mate frequently and groups dominated by hyper-aggres-
sive males drove females away.

New insights on the existence and persistence of variability
In biological systems variability is ubiquitous and sometimes puzzling. Phenotypic variations
occur even in genetic clones. Johannsen showed that genetically identical bean plants produced
beans with broadly distributed sizes [24]. Recent studies extend Johannsen’s bean size variation
to findings of broad variations in protein levels between isogenic cells [10–12] and in behaviors
such as latency to enter S-phase [25] and apoptosis time [11]. Phenotypic variability is puzzling
because in a static and spatially homogeneous environment, natural selection is supposed to
favor the most fit, eliminate the rest, thus narrowing the range of variability [26–28]. However,
the world is neither static nor homogeneous over long time. In a fluctuating and unpredictable
environment a species that maintains a broad set of phenotypes, a strategy known as “bet-
hedging”, might have a better chance of survival over multiple generations [28–31]. Neverthe-
less, could phenotypic variability be important on short time scales? Our work now provides a
new insight into why variability is important to the population even in the lifetime of an
individual.

The key to understanding this is to shift the focus from individuals to the population. This
shift of focus allows us to see so called “cheaters” in a new light. Yeast cannot directly metabo-
lize sucrose but when grown in a sucrose medium they express invertase, which cleaves sucrose
into metabolizable glucose [32, 33]. Because invertase is expressed on the cell membrane, the
glucose produced is free to diffuse into the surrounding medium and be used by other cells.
Some cells, called “cheaters”, do not express invertase but benefit from glucose produced by
other cells [34]. Because cells incur a metabolic cost to produce invertase, cheaters have a
reproductive advantage over invertase producers [34]. Thus, one might expect the population
to eventually converge to a homogeneous population of cheaters. But, of course, a population
composed solely of cheaters would soon starve. Conversely, if all cells produced invertase there
would be a glut of glucose and less reproduction. There is a clear analogy between the yeast and
farmers. The town maximizes its income when there is an optimal diversity of farmers so there
are enough farmers planting tulips to meet the market demand but not so much as to glut the
market. The town is penalized when too many farmers plant tulips because fewer farmers are
left to plant marketable beans. Likewise, there is no need for all yeast cells expend energy mak-
ing invertase and produce a glut of glucose; the “cheaters” can devote their energy to reproduc-
tion. If we define the population benefit function as the growth rate, there would be an optimal
mix of slow-growing invertase producers and fast-growing “cheaters” that maximizes the
growth rate of the colony as a whole. D.S. Wilson [26] writes that differences between
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individuals within a population may be “end product of natural selection” rather than “the raw
material on which natural selection acts.” In other words, evolution may be selecting for organ-
isms that maintain an optimal level of phenotypic variability. Genetic noise in gene translation
or transcription [35–37] may also serve to maintain this level of variability.

The mathematical framework we developed here provides a tool for answering the question
“What is the optimal level of diversity in a population that maximizes benefit?”We hope our
work prompts new ways of thinking about and analyzing the effect of variability on a
population.

Supporting Information
S1 File. Mathematical proof for convergence Sloppy Algorithm, convergence demonstra-
tions, and differences between the Sloppy Algorithm and dithering. This document has five
sections. Section 1 has a proof for the convergence of the Sloppy algorithm. Section 2 shows
how the magic number is explicitly computed when � 2 N and f(L) = L. Section 3 gives the
condition when a useful magic number can be found. Section 4 gives an example where a per-
son is part of the Sloppy Algorithm and has the task of determining the absolute gray-scale
value. Section 5 describes the differences between sloppy rulers and dithering.
(PDF)
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1 Convergence proof for Sloppy Algorithm

Notation and assumptions

Our goals in these appendices are:

1. Prove that the Sloppy Algorithm converges monotonically everywhere when
φ is normally distributed and fpLq “ L.

2. We will adapt the proof to the case where fpLq is sigmoidal and φ is
lognormal.

3. We will show how the magic number is derived when φ is normal and
fpLq “ L.

4. We show what it means to have a useful magic number.

Notation: (1) Strictly monotonically increasing, SMI. (2) Monotone conver-
gence theorem, MCT. (3) N pµ, sq is the normal distribution with mean µ and
standard deviation s. (4) LN pm, sq is the lognormal distribution with median
m and shape factor s.

Assumptions 1 and 2 hold throughout these appendices.

Assumption 1: Let fpLq be strictly monotonically increasing (SMI) on L “
r0, 1s and let it be bounded by 0 ď fpLq ď 1.

Assumption 2: Let φpx, sq be a probability distribution function (pdf) and
let QpL, sq be

QpL, sq “

ż

ΓpLq

φpt, sq dt (S1)

“
1

2
r1` qpL, sqs . (S2)

The following rules define the Sloppy Algorithm.

S1



1. Choose s0 arbitrarily.

2. Compute QpL, s0q “ f1.

3. For any i ě 1

choose si such that Qpλi, siq “ fi where λi solves fpλiq “ fi. (S3)

4. Compute the next fi`1 using

QpL, siq “ fi`1. (S4)

Remarks. Monotonicity of fpLq is needed for the inverse function f´1pxq to
exist. QpL, sq is monotonic in L because Q is the integral of a pdf, which is
everywhere non-negative.

General lemmas

Lemma 1 (Dominance). If fi ă fpLq then fi`1 ą fi.

Proof: The proof hinges on the monotonicity of fpLq and QpL, sq. The mono-
tonicity of fpLq tells us that

If fi ” fpλiq ă fpLq then λi “ f´1
pfiq ă L. (S5)

From (S3) we get fi “ Qpλi, siq and from (S4) we get fi`1 “ QpL, siq. Suppose
to the contrary that fi`1 ď fi then fi “ Qpλi, siq ě QpL, siq “ fi`1. BecauseQ
is monotonic in L if follows that λi ě L. However, because of the monotonicity
of fpLq it follows [statement (S5)] that fpλiq “ fi ě fpLq, which contradicts
our assumption. Therefore, fi`1 ą fi as claimed.

˝

Lemma 11. If fi ą fpLq then fi`1 ă fi.

Proof is similar to Lemma 1.

Lemma 2 (Uniqueness). fpLq is the unique accumulation point.

S2



Proof: Suppose there is fpL̃q which is the limit of the sequence of the Sloppy
Algorithm and we assume without loss of generality that fpL̃q ă fpLq. From
(S4) we have

lim
iÑ8

QpL, siq “ lim fi`1 “ fpL̃q.

And from (S3) we have

lim
iÑ8

Q
`

f´1
pfiq, si

˘

“ lim fi “ fpL̃q.

Equating these two expressions give

QpL, sq “ Q
´

f´1
pfpL̃qq, s

¯

.

But if fpL̃q ă fpLq then by statement S5 if follows that

f´1
pfpL̃qq “ L̃ ă f´1

pfpLqq “ L.

But becauseQ is monotonic in L thenQpL, sq ą Q
´

f´1pfpL̃q, s
¯

contradicting

the equality. Therefore, fpL̃q ě fpLq.

We can argue similarly that fpL̃q ď fpLq therefore, fpL̃q “ fpLq and thus
proving uniqueness.

˝

Remark: We proved Lemmas 1 and 2 without specifying f or φ so they hold
generally.

Convergence of the Sloppy Algorithm when φ “ N and fpLq “ L

The Sloppy Algorithm will not, in general, converge monotonically for any pair
`

fpLq, φ
˘

. In the case where fpLq “ L and φ is the normal distribution, the
Sloppy Algorithm converges monotonically everywhere. The proof given below
can be adapted to study convergence of the Sloppy Algorithm for any

`

fpLq, φ
˘

pair.

Theorem 1 (Convergence Theorem). Let fpLq “ L on L P r0, 1s. Let φ be
the normal distribution N pL, 0, sq with mean of zero and standard deviation
s. QpL, sq is defined by (S2) where Γ is the range from 1{2 ´ L to 8. Then
tfiu defined by recursion rules (S3) and (S4) converges monotonically to fpLq
everywhere.
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Note that in this case fi “ λi.

Proof: The key to the proof and understanding whether the sequence tfiu
converges monotonically depends on the shape of the s˚pLq curve. s˚pLq solves
the fixed point problem

fpLq “ QpL, s˚pLqq. (S6)

For the pair
`

fpLq, φ
˘

“
`

L,N pL, sq
˘

, QpL, sq is

QpL, sq “
1

s
?

2π

ż 8

1{2´L

e´z
2{2s2dz (S7)

“
1

2

„

1` erf

ˆ

?
2p2L´ 1q

4s

˙

. (S8)

s˚pLq is found by solving (S6) with fpLq “ L,

s˚pLq “

?
2p2L´ 1q

4 erf´1
p2L´ 1q

, (S9)

which is shown in Figure A. Note that as LÑ 1{2, erf´1
p2L´1q Ñ

?
π

2 p2L´1q
so s˚p1{2q “ 1{

?
2π « 0.4. We now have the pieces needed to complete the

proof.

0.0 0.5 1.0
0.0

0.2

0.4

L

s∗

λi

si

s∗(L)

Figure A: Optimal standard deviation s when φ is normally distributed and fpLq “ L.

Case 1A: Suppose λi and L lie on the same side of 1/2, say, λi ă L ă 1{2
(Figure A). From Lemma 1 we know that λi`1 ą λi but we do not yet know
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whether λi`1 is greater than or less than L. Define z as

zpsq “

?
2p2L´ 1q

4s
. (S10)

Recall that λi`1 “ QpL, siq “ Qpziq (step (S4) in the Sloppy Algorithm).
Because si ă s˚pLq (see Figure A) and because L ă 1{2 (which makes the
numerator ă 0) it follows that zi ă z˚pLq. Because Q is SMI in z, it follows
that λi`1 “ Qpziq ă Qpz˚pLqq “ L. Thus tλiu is a SMI sequence bounded
above by L so by the monotone convergence theorem (MCT), the sequence
converges to some λ̃. However, Lemma 2 tells us that λ̃ “ L.

Case 1A1: The cases where L ă λi ă 1{2, 1{2 ă L ă λi, and 1{2 ă λi ă L

can be handled in the same way to show tλiu is a SM increasing (decreasing)
bounded above (below) by L.

Case 1B: Suppose λi ă 1{2 ă L. We want to show that there is some k ą i

for which λk ą 1{2. Suppose no such k exists so for all k ą i, λk ď 1{2.
From Lemma 1 we know that λi`1 ą λi. Therefore tλku is a SMI sequence
bounded by 1/2 so by the MCT λk Ñ λ̃. However, Lemma 2 demands that
λ̃ “ L therefore, contrary to our assumption, there must have been some k
where λk ą 1{2. Beyond this k, the situation is identical to Case 1A or 1A1.

Because i was arbitrary, it follows that any sequence tλiu generated by the
Sloppy Algorithm converges monotonically to L.

˝

Figure B shows the monotonic convergence of the Sloppy Algorithm. Each
colored path represents a different L. Note that for L ą 1{2, λi`1 ą λi while
the opposite is true for L ă 1{2.

The Sloppy Algorithm when φ “ LN and fpLq is sigmoidal

Let
fpLq “

Ln

Kn ` Ln
where 0 ď L ď 1. (S11)

Substituting φ “ LN into (S2) and integrating between 0 and ` gives

Qp`,m, sq “
1

2

„

1` erf

ˆ

lnp`q ´m
?

2s

˙

.
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λ0 λ10

Figure B: Global monotonic convergence when φ is normal and fpLq “ L. The i` 1-st estimate of
λ is plotted against the i-th estimate. Curved arrows point to λ0 and λ10 for L “ 0.875. Note that when
L ą 1{2, λi`1 ą λi for all i, which indicates monotonic convergence. For L ă 1{2, the opposite holds. In all
cases, the initial value of s was 1.

Qp`,m, sq “ fp`q is satisfied when sp`q is given by

sp`,mq “
lnp`q ´m

?
2erf´1

p2fp`q ´ 1q
. (S12)

Let ¯̀ solve
2fp¯̀q ´ 1 “ 0. (S13)

Then m must be
m “ ln

`

¯̀
˘

. (S14)

The plot of sp`q is shown in Figure C.

Case 2A: λi ă L ă ¯̀. From Lemma 1, fi ă fi`1 but we don’t know if
fi`1 is greater than or less than fpLq. By definition fi`1 “ QpL, siq and
QpL, s˚q “ fpLq. From Figure C we see that si ą s˚pLq. Let

zi “
lnpL{¯̀q
?

2si
.

Because L ă ¯̀, the numerator is ă 0 so zi ą z˚. Therefore, fi ă fpLq ă fi`1

and we do not get monotonic convergence.

Case 2B: ¯̀ă L ă λi. By Lemma 5, fi`1 ă fi but we don’t know whether
fi`1 is greater than or less than fpLq. From Figure C we see that s˚ ă si.
Therefore, z˚ ą zi (now the numerator is ą 0) therefore, fi`1 “ QpL, siq ă
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0.0 0.5 1.0

0.4

0.5

0.6

L

s∗

Figure C: Optimal shape factor s when φ is lognormal and fpLq is sigmoidal. s˚pLq is given by
eqn. (S12)

QpL, s˚q “ fpLq. Thus, fi ą fpLq ą fi`1 and again we do not get monotonic
convergence.

Figure D shows the nonmonotonic convergence for both L ă 1{2 and L ą 1{2.

0.2

λi+1

λi

0.6

1.0

0.2 0.4 0.6 0.8 1.0 1.2

λ0

λ1

λ2 λ10

Figure D: Nonmonotonic convergence of the Sloppy Algorithm when φ is lognormal and fpLq
is sigmoidal. Plot is similar to Figure B. fpLq is given by eqn. (S11) where K “ 0.3. Although the Sloppy
Algorithm converges, the convergence is nowhere monotonic.

Remarks: Using the same kinds of arguments we can show that for the cubic
function fpLq “ L´pγ{2qL ¨ pL´1{2q ¨ pL´1q (for γ P r0, 4s) and φ P N p0, sq
the Sloppy Algorithm converges monotonically everywhere. However, when
φ P LN plnp1{2q, sq then the Sloppy Algorithm converges monotonically only
for L ą 1{2; convergence is oscillatory for L ă 1{2.
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2 Magic number for φ P N and fpLq “ L

s˚pLq solves the fixed point problem QpL, s˚q “ L. Writing z “ 2L ´ 1 the
fixed point problem becomes

erf

ˆ

?
2z

4s˚

˙

“ z.

Because L P r0, 1s then z P r´1, 1s. We use the approximation erfpxq « x for
x P r´1, 1s. Then the fixed point problem becomes

?
2z

4s˚
« erf

ˆ

?
2z

4s˚

˙

“ z

from which it follows that

s˚ «

?
2

4
” sm.

Because this approximation holds over all L P r0, 1s it follows that sm almost
solves the fixed point problem for all L, that is, QpL, smq “ L.

3 Condition for having a useful magic number

When the benefit BpL, νq is defined as (eqns. (9) and (11) in the main text)

BpL, νq ”
B̃pL, νq

Dm
“ rHpνqν ´Hpν ´ 1qpν ´ 1qsLb1

`
b2

β
p1´ Lνq ´ L|1´ ν|b3 (S15)

or
BpL, νq “

fpLq

L
ν ´

ν2

2
, (S16)

then BpL, νq is maximized when ν “ fpLq{L. s˚pLq solves the fixed point
problem QpL, s˚pLqq “ fpLq so B always is maximized when s˚pLq is used.
For arbitrary s, QpL, sq ‰ fpLq so νpsq “ QpL, sq will not maximize B. We’d
like to replace the continuum s˚pLq with a single magic number sm that almost
maximizes BpL, νq for all L.

Clearly, the closer QpL, smq approximates fpLq for all L P r0, 1s, the closer
BpL, νq will be it to its maximum value. In other words, QpL, smq should “look
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like” fpLq in the sense that QpL, smq is close to fpLq everywhere. The natural
metric for this is the maximum norm,

d
`

QpL, smq, fpLq
˘

“ max
`ˇ

ˇQpL, smq ´ fpLq
ˇ

ˇ for all L P r0, 1s
˘

. (S17)

If d
`

QpL, smq, fpLq
˘

is small then BpL, νpsmqq « BpL, νps˚qq, meaning the
benefit is nearly maximized.

The reason the normal distribution gave such poor performance when fpLq was
sigmoidal and the lognormal distribution gave excellent performance is because
QN pL, smq (the integral in (S2) when φ P N ) does not look sigmoidal whereas
QLN pL, smq (φ P LN ) looks remarkably sigmoidal.

4 Determining the grayscale level using the Sloppy Algorithm

Algorithms that work well in a computer simulation can fail miserably outside
of a simulation. We tested whether the Sloppy Algorithm would work when a
human was part of the iteration loop. The problem was to see if the Sloppy
Algorithm could be used by a person to determine the absolute, as opposed to a
relative, magnitude of a quantity. Examples of this kind of task is determining
the brightness of a variable star by eye (http://www.aavso.org/) or the weight
of an ox [1].

The specific problem task was to determine the gray scale value of an image.
The image, a square displayed on the computer monitor, had a gray scale value
between 0 and 255. Next to the test square, a comparison square of equal size
whose gray level was randomly chosen from a normal distribution with a mean
level of 128 and standard deviation si was shown. The person had to decide
whether the test square was brighter or dimmer than the comparison square.
After making N comparisons, λ̄i was calculated from λ̄i “ n{N , where n was
the number of times that a test square was judged brighter than the comparison
square and i is the iteration number. This is step [4] (eqn. (S4)) in the Sloppy
Algorithm. Based on λ̄i a new si that solved eqn. (S3) was determined. Fig. E
shows results from three tests (from 2 subjects). The dashed lines mark the
correct gray level L. The initial s value was set to 1 ˆ ∆ (filled circle) or
0.1ˆ∆ (filled square) where ∆ “ 256 equals the range of possible gray values.
These initial s values were chosen so that the first estimate λ̄1 would be far
from L (the program “knew” the value of L but the person did not) thereby
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allowing us to see how the estimates converged to L. The convergence to the
correct grayscale value is similar to that seen in Figure 2 in the main text except
that the convergence is nonmonotonic. Nonmonotonicity arises from the finite
number of decisions (N) that were made; simulations show that the convergence
becomes monotonic as N Ñ 8. We used N “ 150 to get good estimates of λ̄i
but making such a large number of decisions (150ˆ6 iterations “ 900 decisions)
is tiring. Therefore, we tested whether setting s0 to the magic number would
hasten the convergence. The results (open triangle) in this case show that even
on the first iteration the estimate (71.4) is already close to the correct value
(70).
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Figure E: Evolution of grayscale estimation using Sloppy Algorithm. Dashed lines indicate correct
grayscale values. Subject 1, squares and triangles; subject 2, circles. Convergence is immediate when initial
s equalled the magic number (triangles).

For this example one observer makes N decisions while in the main text each
of the N rulers makes one decision. These two approaches are mathematically
equivalent.
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5 Sloppy Algorithm and sloppy rulers versus dithering

Sloppy rulers when combined with the Sloppy Algorithm can make accurate,
high-resolution measurements even though each sloppy ruler has the lowest
possible resolution. Dithering is a technique that can also improve measurement
resolution [2] and has long been used to reduce quantization errors of analog-
to-digital conversion [3]. Noise is essential in both dithering and sloppy rulers.

However, sloppy rulers and dithering are different mathematically and in their
arenas of application. In dithering the output signal is the average of both
positive and negative excursions over many quantized states (256 states in an
8-bit analog-to-digital converter) centered around the input signal. By contrast,
sloppy rulers average over only two states, zero and one.

This difference in what quantities are averaged is important in determining
what the optimal noise level, s, should be to get accurate measurements. For
dithering any s larger than half of the quantization step size will produce an
accurate output [2]. For sloppy rulers, there is a unique s for each input value L
that produces an accurate output, which the Sloppy Algorithm finds. Choosing
s arbitrarily produces estimates of L shown in Fig. 3A in the main text. The
y-axis is the estimate of L; only by happenstance does the estimate match the
true value of L.

The Sloppy Algorithm and dithering are useful in different systems. Sloppy
rulers represent a wide class of systems that make binary decisions. Such sys-
tems include yes-or-no voting in politics, all-or-none protein expression in cells,
choice of crops to plant. Dithering, on the other hand, is useful when there
are many signal levels as in analog-to-digital converters and in smoothing out
pixelation in images.
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