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ABSTRACT
We present a mathematical model to guide and interpret

ongoing Cell-in-Gel experiments, where isolated cardiac my-
ocytes are embedded in a constraining viscoelastic hydrogel,
to study mechano-chemo-transduction mechanisms at the single
cell level. A recently developed mathematical model, based on
the elastic Eshelby inclusion problem, is here extended to ac-
count for viscoelasticity of the inclusion (cell) and the matrix
(gel). The viscoelastic simulations indicate that the change in
cell stiffness, as a result of the active up-regulation of the inter-
nal Ca2+ transients, has a strong influence on the contraction
of the cell in response to the afterload. It is also found that in-
creasing gel’s crosslink density significantly alters the strain and
stress fields inside the cell and yields to an increased time-lag in
the response of the cell to the external stimulus.

INTRODUCTION
During each heartbeat, cardiac muscle cells experience me-

chanical stresses that continuously vary with physical activity,
posture, emotion, and pathophysiological states. The healthy
heart is an impressively “smart” structure, capable of upregu-
lating its contraction and force in response to cardiac demands
by the Frank Starling and Anrep mechano-chemo-transduction
(MCT) mechanisms [1, 2]. Under pathological conditions, how-
ever, hemodynamic overload can trigger structural growth and
remodeling that leads to arrhythmias, hypertrophy, dilation, or
heart failure. A novel Cell-in-Gel system is being used to study
MCT mechanisms at the single-cell level under normal and over-
load conditions in healthy and diseased states. The system con-
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sists of isolated live cardiac myocytes that are embedded in a
constraining hydrogel to mimic the in vivo mechanical environ-
ment during myocyte contraction. While cell contractions and
strains can be measured directly, mechanical stresses must be in-
ferred by analysis.

Here, we present a mathematical model to quantify all me-
chanical fields and to guide and interpret ongoing Cell-in-Gel
experiments [3]. The proposed model is based on the classi-
cal Eshelby problem of an ellipsoidal inclusion embedded in an
elastic matrix, which is extended here to account for the vis-
coelasticity of the inclusion (cell) and the matrix (gel). This pro-
vides more accurate calculations of time-dependent 3D stress and
strain fields present during experiments.

Hydrogels of various cross-link densities are used in the
Cell-In-Gel experiments to systematically vary the mechanical
resistance to myocyte contraction. Hydrogels are viewed as hy-
drophilic three dimensional networks of polymer chains contain-
ing a large amount of water. These crosslinked polymer networks
resemble elastic scaffolds surrounded by water molecules. Hy-
drogels are structurally similar to the extracellular matrices in
tissues and both exhibit viscoelastic behavior. Aside from their
suitable mechanical properties, hydrogels can be synthesized to
be biocompatible and biodegradable and thus establish an excel-
lent carrier for cell and tissue engineering applications.

This paper begins with an overview of the boundary value
problem in the context of the elastic Eshelby inclusion problem.
A few finite element simulations are included to explore the re-
sponse of actual cells of non-ellipsoidal geometries. A brief re-
view of viscoelasticity theory is followed by a characterization
of the materials, both gel and cell. Then, our previous elastic
inclusion analysis is leveraged to solve the corresponding vis-
coelastic problem by exploiting the Correspondence Principle of
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Viscoelasticity. Taking advantage of periodic cell contractions,
a Discrete Fourier Transform analysis enables fast computation
of time-dependent histories of all mechanical fields. Finally, a
parameter study is performed to investigate the influence of ma-
terial properties and cell geometry.

ESHELBY ANALYSIS
Of interest is the mechanical behavior of a live cardiomy-

ocyte embedded in a viscoelastic hydrogel in response to a time-
periodic stimulus that tends to contract the cell (Figure 1). Our
previous mechanical analysis of Cell-In-Gel experiments [4] was
based on the Eshelby inclusion problem [5], where the cell was
treated as an ellipsoidal inclusion that undergoes an eigenstrain
(transformation strain) while embedded in an infinite elastic ma-
trix. The present work extends the Eshelby problem to account
for viscoelasticity of the constituents. Before the viscoelastic
analysis is presented, however, a brief review is provided here
of the purely elastic Eshelby boundary value problem (BVP).
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FIGURE 1. BOUNDARY VALUE PROBLEM ANALYZED: (A)
CONFOCAL MICROGRAPH OF A CARDIOMYOCYTE AND
A SCHEMATIC OF THE CELL-IN-GEL EXPERIMENT, (B) 3D
SCHEMATIC OF AN ELLIPSOIDAL INCLUSION.

Elastic Inclusion problem
When the elastic properties in the inclusion and matrix are

the same, the BVP is called the homogeneous inclusion prob-
lem [5]. The inclusion occupies a subvolume VI , assumed here
to have the shape of an ellipsoid (the most general shape hav-
ing a known analytical solution for the BVP), and is embedded
and bonded to the matrix at its periphery. The matrix, occupying
the complementary volume VM, is assumed to be of infinite ex-
tent, so the remote boundaries are traction and displacement free.
When unconstrained by the matrix, the inelastic strain in the in-
clusion is βββ , called the eigenstrain (or transformation strain)1.

1Bold-face symbols denote vectors or higher order tensor quantities.

This simulates the load-free strain of the cell when it contracts.
The presence of the matrix, however, causes the magnitude of the
inclusion strain εεε to be less, since it is resisted by the surrounding
matrix. This tug-of-war causes self-equilibrated (residual) stress
fields inside the inclusion and within the matrix.

With respect to the Cartesian coordinate system shown in
Figure 1b, the displacements ui, strains εi j, and stresses σi j for
the elasto-static problem are2

ui (xxx) = Bi jk (xxx)β jk, (1a)
εi j (xxx) = Di jkl (xxx)βkl , (1b)

σi j (xxx) =Ci jkl [εkl (xxx)−Γ(xxx)βkl ] , Γ(xxx) =
{

1, xxx ∈VI ,
0, xxx ∈VM,

(1c)

where xxx = xieeei is a position vector with Cartesian components
{xi}= {x,y,z} and unit base vectors eeei (i = 1,2,3). Ci jkl are the
components (constants) of the 4th-order elastic stiffness tensor.
The quantities Bi jk(xxx) and Di jkl(xxx) are position-dependent com-
ponents of 3rd-order and 4th-order tensors, respectively, which
can be found in [5, 6].

If the elastic properties of the inclusion CCCI and matrix CCCM

are different, the BVP is called the inhomogeneous inclusion
problem. The problem is reduced to the previous homogeneous
inclusion problem by introducing an equivalent eigenstrain βββ

∗

that satisfies

CI
i jkl
[
S0

klmn β
∗
mn−βkl

]
=CM

i jkl
[
S0

klmn β
∗
mn−β

∗
kl
]
, (2)

where S0
klmn = Dklmn(000) are components of the Eshelby tensor

within the inclusion (see [4]). To obtain the correct stresses
and strains inside and outside the inhomogeneous inclusion, one
just replaces the actual eigenstrain by the equivalent eigenstrain
(βββ → βββ

∗) in the previous relations for the homogeneous inclu-
sion problem and proceeds by using the matrix properties CCCM

everywhere,

ui (xxx) = Bi jk (xxx)β
∗
jk, (3a)

εi j (xxx) = Di jkl (xxx)β
∗
kl , (3b)

σi j (xxx) =CM
i jkl [εkl (xxx)−Γ(xxx)β

∗
kl ] . (3c)

For the Cell-in-Gel problem, the hydrogel (matrix) and cell
(inclusion) are treated as isotropic and incompressible materi-
als. The Young’s modulus E and shear modulus G are related by
2G = E/(1+ν) in terms of the Poisson’s ratio ν , so in the limit
ν → 1/2 the shear modulus becomes G = E/3. The dilatation

2The Einstein summation convention is assumed on repeated lower case latin
indices within a term, as in xieeei = x1eee1 + x2eee2 + x3eee3.
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in this case is zero (εkk = 0), and the deformation is isochoric
(volume preserving). The eigenstrain components are taken as
β11 = β ,β22 = β33 = −β/2, and β12 = β23 = β31 = 0, where β

is the eigenstrain along the cell’s long axis. As shown in [4] the
stresses become

σi j(xxx) = 2GM [
εi j(xxx)−Γ(xxx)β

∗
i j
]
+ p(xxx)δi j, (4)

where the mean stresses in the inclusion and matrix are

p(xxx) =


3GMβ ∗

[
I1(0)
4π
− 1

3

]
, xxx ∈VI

3GMβ ∗
[

I1(λ )−Λ(λ )x2
1 α2

1 (λ )

4π

]
, xxx ∈VM

(5)

where β ∗ = β ∗11 and expressions for calculating λ (xxx),α1, I1,Λ
can be found in [4]. The equivalent eigenstrains are

β
∗
11 =

β

P

[
2η +

η−1
4π

(
−I2 + I3−3b2I22 +2c2I23−3c2I33

)]
,

(6a)

β
∗
22 =

β

P

[
−η +

η−1
4π

(
2I2−2I3−3b2I22− c2I23 +6c2I33

)]
,

(6b)

β
∗
33 =

β

P

[
−η +

η−1
4π

(
−I2 + I3 +6b2I22− c2I23−3c2I33

)]
,

(6c)

P = 2η
2 +η

η−1
π

(N2 +N3 +M32)+6
(

η−1
4π

)2 (
N2N3−M2

32
)
,

(6d)

η = GM/GI . (6e)

The I, N, and M quantities involve elliptic integrals computed in-
side the inclusion as detailed in [4], and β ∗12 = β ∗23 = β ∗31 = 0. The
strains and stresses within the inclusion are uniform, depending
only on the inclusion geometry and the relative stiffness of the
matrix/inclusion η .

The results for an ellipsoidal inclusion are provided in Fig-
ures 2a and 2b, showing the axial strain and axial stress fields
in the symmetry plane y = 0, which confirms that the fields are
uniform inside the inclusion. The problem is also symmetric
with respect to the planes x = 0 and z = 0, so only the posi-
tive quadrant is shown. In this example, the inclusion dimen-
sions are b = c = a/5, the shear moduli are GI = 8.3 kPa and
GM = 10.5 kPa, and β = −0.17247. The fields in the matrix
are non-uniform with a local strain and stress concentration in
the matrix just outside x = a, but these decay quickly away from

(a) Ellipsoid inclusion: axial strain field (b) Ellipsoid inclusion: axial stress field

(c) Brick inclusion: axial strain field (d) Brick inclusion: axial stress field

FIGURE 2. FINITE ELEMENT RESULTS FOR ELASTIC INCLU-
SIONS IN THE PLANE y = 0 (POSITIVE QUADRANT)

the inclusion. The results shown in the figure were actually ob-
tained by finite element analysis in Comsol, but they were vali-
dated with essentially perfect agreement to the Eshelby analysis
calculated in Mathematica.

We also sought to determine how well an ellipsoidal inclu-
sion represents a cardiac myocyte, which is typically more cu-
cumber shaped. As an extreme case, the results from a second
finite element simulation are shown in Figures 2c and 2d for a
brick shaped inclusion with sharp corners. The aspect ratio and
material properties are the same as before. As expected the strain
and stress fields within the inclusion are no longer uniform, now
gently varying mostly along the x-axis. The axial stress is max-
imum near the center of the inclusion (x = 0) and decreases by
about 20 % at the (x = a). This is consistent with the well-known
shear lag phenomena in fiber reinforced composites.

TABLE 1. COMPARISON OF STRESSES FOR TWO INCLUSION
SHAPES

σi j (kPa) Ellipsoid Brick

Min. Max. Ave.

σxx 3.828 2.122 4.108 3.654

σyy −0.075 −2.103 0.002 −0.207

σzz −0.075 −2.103 0.002 −0.207

σxy 0.000 −0.206 0.858 0.083

σxz 0.000 −0.206 0.858 0.083

σyz 0.000 −0.318 0.022 −0.020
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A summary comparison of all stress components inside the
inclusion is provided in Table 1 for the two inclusion shapes. The
average values are similar.

MATERIALS
A brief review of linear viscoelasticity theory is provided be-

low, followed by a characterization of the gel and cell materials.

Linear Viscoelasticity
According to the theory of linear viscoelasticity, the consti-

tutive (stress-strain) response of the material can be expressed
as a convolution integral in terms of a relaxation modulus and
a prescribed strain history. That is, for a given shear strain his-
tory γ(t), the shear stress τ(t) history is expressed in terms of the
relaxation shear modulus G(t) as

τ(t) =
∫ t

0−
G(t− s)dγ(s) = G(t)γ(0+)+

∫ t

0+
G(t− s)γ̇(s)ds,

(7)

where γ̇ = dγ/dt is the strain rate. If the strain input is a step
function at time t = 0 according

γ(t) =

{
0, t < 0
γ0, t ≥ 0

(8)

where γ0 is a constant, the response is simply τ(t) = γ0G(t).
Thus, the relaxation modulus G(t) = τ(t)/γ0 is the stress re-
sponse to a unit step strain input. For typical viscoelastic solids
the stress jumps to an initial value G0 at time t = 0+ and then
decays monotonically as t→ ∞ to a smaller positive value G∞.

To capture the viscoelastic behavior of real hydrogels from
rheology data with reasonable accuracy, the relaxation modulus
G(t) is approximated here by a generalized Maxwell viscoelas-
tic model. The material model consists of multiple Maxwell el-
ements assembled in parallel, and G(t) is then mathematically
represented by a Prony series according to

G(t) = G∞ +∆G
Nτ

∑
j=1

ξ j e−t/τ j , (9)

where ∆G = G0−G∞, G∞ is the asymptotic value as t → ∞, τ js
( j = 1,2, . . . ,Nτ ) are relaxation time constants (not to be con-
fused with the shear stress), and ξ j represent ‘phase fractions’
that apportion the amount of material that relaxes according to
each time constant τ j. To ensure it is physically reasonable and
to preserve the interpretation of G0 and G∞ as instantaneous

and long-term values, respectively, the fractions must be non-
negative ξ j ≥ 0 (for all j = 1,2, . . . ,Nτ ) and satisfy ∑

Nτ

j=1 ξ j = 1.
If strain input is oscillatory, say γ(t) = γ0 sinωt where ω is

a prescribed angular frequency, the resulting shear stress history
τ(t) by Eq. (7) is

τ(t)
γ0

= G′ sinωt +G′′ cosωt−∆G
Nτ

∑
j=1

ωτ jξ j

1+ω2τ2
j

e−t/τ j , (10a)

where

G′ = G∞ +∆G
Nτ

∑
j=1

ω2τ2
j ξ j

1+ω2τ2
j
, (10b)

G′′ = ∆G
Nτ

∑
j=1

ωτ jξ j

1+ω2τ2
j
. (10c)

After a sufficiently long time the decaying part can be neglected,
leaving the steady oscillatory response

τ(t)
γ0

= G′ sinωt +G′′ cosωt. (11)

The quantity that characterizes the in-phase portion of the re-
sponse G′ is called the storage modulus, while that for the out-of-
phase portion G′′ is called the loss modulus. These are frequency-
dependent functions which can be measured in a modern dy-
namical mechanical analyzer. To see the phase δ explicitly,
one can rewrite Eq. (11) as τ(t)/γ0 = |G|sin(ωt +δ ), where

tanδ = G′′/G′ and |G|=
√
(G′)2 +(G′′)2.

Alternatively, using complex variables3, suppose the input
strain history is oscillatory according to γ̂(t) = γ0eiωt = cosωt +
isinωt (by Euler’s relation) with i =

√
−1 and the complex re-

laxation function is Ĝ = G′ + iG′′. Repeating the convolution
integration Eq. (7) and neglecting the decaying part, gives the
response as

τ(t)
γ0

=
[
G′+ iG′′

]
eiωt

=
[
G′ cosωt−G′′ sinωt

]
+ i
[
G′ sinωt +G′′ cosωt

]
.
(12)

The real part is the response to a cosine input, and the imaginary
part is the response to a sine input. Moreover, the convolution
integral Eq. (7) can now be replaced by

τ(t) = Ĝ(ω)γ0eiωt (13)

3denoted by a hat over a variable, such as γ̂
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in terms of complex variables, when one is only interested in the
limit cycle response (after transients have died out).

Hydrogel Characterization
Rheometry measurements were performed on polyvinyl al-

cohol (PVA)-boronate hydrogels using a torsional dynamical me-
chanical analyzer with cone and plate platens. In all cases the
shear strain γ amplitude was 2 %, and frequency scans were per-
formed between 0.1 and 100 rad/s. Hydrogels of 10 % PVA (89-
98 kDa) for several different cross-linker (CL) concentrations
C = {2.5,5,7.5,10,12.5,15}% were examined. Each case was
run on three or four samples at 25 ◦C.

As an example, the results of a 10 % CL hydrogel sample
are shown in Figure 3. The angular frequency was converted to
cyclic frequency ( f in Hz) according to ω = 2π f and frequency
results are shown on a logarithmic scale for clarity. In Figures 4a
and 4b, the open symbols mark experimental points, and the solid
black lines are fits according to Eqs. (10b) and (10c). In this case,
and all others, G∞ = 0 was prescribed, since the G′ was quite
small at low frequencies (see the lefthand tail in Figure 4a). This
means the hydrogel behaves more like a viscoelastic fluid than a
viscoelastic solid.

The fits for G′ and G′′ are reasonably good. This was
achieved by selecting time constants at equal increments along a
logarithmic scale, τ j =

{
2−10,2−9, . . . ,22

}
, and then fitting with

the parameters ξ j ( j = 1,2, . . . ,13) and ∆G. For most of the hy-
drogel samples, an unconstrained fit resulted in a distribution of
ξ versus logτ (relaxation spectrum) that resembled a Gaussian
distribution. Consequently, the relaxation spectra for all of the
results herein were constrained to lie along a Gaussian distribu-
tion according to

ξ j = ξ (τ j) = ξ0 exp

[
−
(

log(τ j/τ0)

σ0

)2
]
, (14)

where τ0 is the mean time constant, σ0 is the standard deviation
(characteristic width) of the distribution, and ξ0 is just a normal-
izing constant to make ∑

Nτ

j=1 ξ j = 1. The resulting spectrum is
shown in Figure 3d. This reduced the number of fitting param-
eters down to only three {G0,τ0,σ0} for each hydrogel sample.
The only tradeoff is that tanδ is somewhat over-predicted at very
low frequencies (see Figure 4c).

A summary is provided in Figure 4, showing the trends of
the three fitting parameters across all CL cases. The data points
shown were obtained by fitting each frequency scan, similar to
Figure 3. The elastic shear modulus G0 generally increases with
CL concentration in a non-linear manner, although the scatter
between samples becomes progressively larger. The mean time
constant τ0 also increases with CL concentration but trends al-
most linearly. The width of the relaxation spectrum σ0 is nearly
constant, except at the smallest CL concentration.

(a) Storage modulus (b) Loss modulus

(c) tanδ = G′′/G′ (d) Relaxation spectrum of fit

FIGURE 3. EXAMPLE TORSION RHEOLOGY MEASURE-
MENTS ON A 10 % CROSS-LINKED HYDROGEL. SOLID LINES
ARE FITS USING A GAUSSIAN-LIKE RELAXATION SPECTRUM.

C

(a) Elastic shear modulus

C

(b) Mean time constant

C

(c) Spectrum width

FIGURE 4. SUMMARY OF FITTING PARAMETERS WITH
CROSS-LINK CONCENTRATION C.

The lines in Figure 4 are CL-dependent fits of the fitting
parameters according to

G0(C) =
g0

2
[1+ tanh(g1 (C−g2))] , (15a)

τ0(C) = h0 +h1C+h2C2, (15b)

σ0(C) = s0
[
1− e−s1C] . (15c)

Values of the fitting constants are provided in Table 2. This re-
sulted in master fit functions for the complex shear moduli as a
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TABLE 2. FITTING PARAMETERS

G0 τ0 σ0

g0 = 14.7 (kPa) h0 = 0.00486 (s) s0 = 0.58

g1 = 34.4 h1 = 1.17 (s) s1 = 55

g2 = 0.0866 h2 =−2.62 (s)

function of frequency and CL concentration.

Myocyte Characterization
The elastic modulus of the cardiomyocyte was estimated

using the available results from the literature. Uniaxial force-
stretch measurements were performed on a single ventricular
myocyte stimulated at 1.0 Hz frequency using coated micro-
rods [7]. According to the extracted stress-strain response curve
shown in Figure 5, the cell is assumed to be an incompressible
linear elastic material with an approximate Young’s modulus of
EI ≈ 25 kPa.

(a) Data from [7]

Stim.

49 kPa

E=25 kPa

Passive
Active

(b) Extracted responses

FIGURE 5. SINGLE CELL UNIAXIAL RESPONSE

VISCOELASTIC ESHELBY ANALYSIS
Now we wish to account for the viscosity of the cell and gel

in the framework of the Eshelby inclusion analysis. This causes
all mechanical field quantities to become dependent on time t.

According to correspondence principle of linear viscoelas-
ticity [8], if the linear elastic solution is known for a body that
undergoes quasi-static motion, the solution to the corresponding
problem in linear viscoelasticity can be constructed by substi-
tuting constitutive parameters with their time-dependent coun-
terparts. The correspondence principle takes advantage of time-
space separability by solving the time-dependent portion of the
problem in the Laplace or Fourier domain. The principle how-
ever, is restricted to problems where the boundary conditions

(surface tractions or displacements) do not change type over
time, although the surface tractions or displacements may be
time-dependent. That is, for every point on the surface, either
tractions are specified for all time or the displacements are spec-
ified for all time.

Taking the Fourier transform of the field equations in
Eq. (3b), the pseudo-elastic solution is solved in the frequency
domain by

ûi (xxx,ω) = B̂i jk (xxx,ω) β̂
∗
jk (ω) , (16a)

ε̂i j (xxx,ω) = D̂i jkl (xxx,ω) β̂
∗
kl (ω) , (16b)

σ̂i j(xxx,ω) = 2ĜM(ω)
[
ε̂i j(xxx,ω)−Γ(xxx) β̂

∗
i j(ω)

]
+ p̂(xxx,ω)δi j.

(16c)

An arbitrary eigenstrain history can be expressed as the Complex
Fourier Series

β (t) =
∞

∑
n=−∞

β̂neiωnt , (17)

where the coefficients are complex valued β̂n = β ′n + iβ ′′n . Since
β (t) are real valued, the coefficients β̂n and β̂−n are complex con-
jugates. The stress response to Eq. (17) is just the superposition
of responses at each individual frequency, since the viscoelas-
tic constitutive relations are linear. Thus, the generalization of
Eq. (16c) is the stress tensor (suppressing the spatial arguments)

σσσ(t) =
∞

∑
n=−∞

2ĜM
n

[
ε̂εεn−Γ β̂ββ

∗
n

]
+ p̂n δδδ , (18)

where Ĝn = Ĝ(ωn) are the complex relaxation moduli at each
frequency. This relation provides the steady state oscillatory
response to a periodic eigenstrain input. The coefficients β̂n
are found in the usual way by multiplying Eq. (17) through
by e−iωmt with ωm = 2πm/T , integrating across the interval
t ∈ [−T/2,T/2], and exploiting orthogonality of integrals in-
volving exp(i2π(n−m)t/T ), resulting in

β̂n =
1
T

∫ T/2

−T/2
β (t)e−i2πnt/T dt. (19)

If the eigenstrain input is measured at N equal time incre-
ments (∆t = T/N) within a periodic cycle, the sequence is

βm = β (m∆t), for integers m =−N
2
, . . . ,

N
2
−1. (20)
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which assumes N is even4. This leads to the Discrete Fourier
Transform (DFT), where Eq. (19) is approximated by

β̂n ≈
1
N

N/2−1

∑
m=−N/2

βm e−i2πnm/N , n =−N
2
, . . . ,

N
2
−1, (21)

and the inverse DFT, replacing Eq. (17), is

βm =
N/2−1

∑
n=−N/2

β̂n ei2πnm/N . (22)

Finally, using Eq. (18) the stress response at discrete times
becomes

σσσm = σσσ(m∆t) =
N/2−1

∑
n=−N/2

2ĜM
n

[
ε̂εεn−Γ β̂ββ

∗
n

]
+ p̂n δδδ . (23)

Note that one needs to be careful about the ordering of frequen-
cies to ensure the complex modulus is summed over complex
conjugate pairs with respect to real frequencies. That is, when
using Eq. (10) with ωn = 2πn/T , we need G′(ωn) = G′(−ωn)
and G′′(ωn) = −G′′(−ωn). This is why we prefer the quasi-
symmetric summation about n = 0 (rather than n = 1, . . . ,N or
n = 0, . . . ,N−1 that is often used).

VE Eshelby Simulations
In this Section, the viscoelastic Eshelby model is used to

calculate the multiaxial stress and strain time responses of an
ellipsoidal cell inside a typical gel. A baseline case is first pre-
sented, and the simulated axial strain history is compared to the
results of a Cell-in-Gel experiment. A parametric study is then
carried out to investigate the influence of geometric and material
properties of the system on the stress and strain time responses.

Baseline Study
As a baseline case, the multiaxial steady-oscillation time

histories are studied for an elastic inclusion (cell) of GI
0 = 8.3

kPa inside a viscoelastic matrix (hydrogel) with a crosslink den-
sity of C = 10 %. Consistent with the actual cardiomyocyte in the
Cell-in-Gel experiment, the ellipsoidal cell is considered to have
an aspect ratio of a/b = 5 with c = b. The experiment recorded
the axial strain history of a cardiomyocyte electrically stimulated
at about 0.5 Hz after many cycles while embedded in the gel
(shown by black line in Figure 6a). The maximum contraction
was about −11 % strain. The cross-linker was then dissolved

4If N is odd, m =−N−1
2 , . . . , N−1

2

away (leaving a nearly inviscid water/PVA fluid) and the strain
history of the same myocycte was measured under nearly load-
free conditions (shown by gray line in Figure 6a). As expected,
the maximum contraction in this case was larger, about −17 %
strain. This load-free strain history was used as the eigenstrain
input to the viscoelastic Eshelby analysis.

(a) Strain histories (b) Stress histories

FIGURE 6. MULTIAXIAL STRAIN AND STRESS TIME RE-
SPONSES IN THE INCLUSION FOR THE BASELINE CASE

The predicted axial strain history εxx (as shown by the blue
line in Figure 6a) has the right qualitative character, but the peak
contraction (about −7 % strain) is less than the measured exper-
imental value. This is due to the fact that the actual myocyte
significantly up-regulates its internal Ca2+ transients (measured,
but not shown here) that increase contractility in response to the
resistance provided by the hydrogel. This is the cellular origin
of the Anrep effect in the whole heart in response to increased
afterload. This adaptive feature is not captured here in the Es-
helby model. Also, as expected for a contractile, but otherwise
passive, inclusion there is a 5 % time-lag between the simulated
strain peak and the load-free eigenstrain; whereas, no time lag is
detectable in the measured axial strain in-gel. It can also be seen
from Figure 6b that the predicted peak stresses precede maxi-
mum contraction, due to the viscosity of the gel. The stress state
in the inclusion is multi-axial, but the shear stresses are zero and
the lateral stresses are quite small due to the slenderness of the
ellipsoid.

Parametric Study
Numerous simulations have been performed to understand

parametric sensitivities of the Cell-in-Gel system with respect
to the stiffness and aspect ratio of the cell, and the viscoelas-
tic properties of the gel. As demonstrated in Figure 7a, the gel
cross-link concentration, C has a strong effect on the cell con-
traction such that the predicted magnitude of strain inside the
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cell is significantly reduced and the phase difference between the
stimulus signal and the contraction response is increased as the
crosslink density is enhanced. Similarly, the magnitude of pre-
dicted stresses are increased and the residual stress recovery is
delayed with increased crosslink density of hydrogel.

(a) Strain histories (b) Stress histories

FIGURE 7. EFFECT OF GEL CROSS-LINK CONCENTRATION
ON THE AXIAL STRAIN AND STRESS TIME HISTORIES IN THE
INCLUSION

In another study, the influence of cell aspect ratio, a/b, has
been investigated. It can be seen from Figure 8, that changing
aspect ratio has a moderate effect on time histories of stress and
strain curves such that somewhat larger stress and reduced con-
traction is observed for slender cells (higher a/b), This is due
to the fact that for a fixed value of b (and c), increasing the as-
pect ratio would increase the total surface of the cell that is in
contact with the gel and subsequently the cell would experience
higher stresses against contraction (inside the gel), for the same
stimulus.

To better understand the effect of up-regulation on the time
response of the system, the effect of cell stiffness, GI

0 , has been
considered on stress and strain curves. This is an important study
since cardiac myocytes are well known to up-regulate their Ca2+

transients in response to afterload (Anrep effect). As presented
in Figure 9a, the cell elastic stiffness has a large effect, and the
agreement with measurement of peak contraction at augmented
values indicates one possible manifestation of up-regulation.

CONCLUSIONS
Here we provide a 3-D mechanical analysis of a single my-

ocyte beating in a viscoelastic hydrogel that mimics the in vivo
mechanical environment in myocardium under certain patholog-
ical conditions. As a necessary step towards understanding the

(a) Strain histories (b) Stress histories

FIGURE 8. EFFECT OF CELL ASPECT RATIO ON THE AXIAL
STRAIN AND STRESS TIME RESPONSES IN THE INCLUSION

mechanical stress effects on the heart function and disease de-
velopment, we present a general analytic solution for inhomo-
geneous viscoelastic Eshelby inclusion problem that facilitates
parametric studies of the in vitro cell-in-gel experiment and pro-
vides a quantitative mapping of the mechanical strain and stress
inside and outside the myocyte. Our analyses reveal that the
change in myocyte stiffness, as a result of the up-regulation of the
Ca2+ transients, has a strong influence on the contraction of the
cell in response to the afterload. The findings also demonstrate
that increasing hydrogel’s crosslink density, in the cell-in-gel ex-
periment, will significantly alter the strain and stress fields inside
the cell and yields to an increased time-lag in the response of
the myocyte to the external stimulus. The results of the present

(a) Strain histories (b) Stress histories

FIGURE 9. UP-REGULATION EFFECT ON THE STRESS AND
STRAIN TIME RESPONSE CURVES
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model is in good agreement with the experimental contraction
measurements of the cell-in-gel experiment and will inform stud-
ies of the mechanotransduction mechanisms that link mechanical
stress to cardiac function and remodeling in health and disease.
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Archiv : European Journal of Physiology, 462(1), p. 39.

[3] Jian, Z., Han, H., Zhang, T., Puglisi, J., Izu, L. T., Shaw,
J. A., Onofiok, E., Erickson, J. R., Chen, Y.-J., Horvath, B.,
Shimkunas, R., Pan, T., Chan, J., Banyasz, T., Chiamvimon-
vat, N., Bers, D. M., Lam, K. S., and Chen-Izu, Y., 2014,
“Mechanochemotransduction During Cardiac Contraction Is
Mediated by Localized Nitric Oxide Signaling,” Science Sig-
naling, 7(317), pp. 1–9.

[4] Shaw, J. A., Izu, L. T., and Chen-Izu, Y., 2013, “Mechani-
cal Analysis of Single Myocyte Contraction in a 3-D Elastic
Matrix,” PLOS ONE, 8(10), p. e75,492.

[5] Eshelby, J. D., 1957, “The determination of the elastic
field of an ellipsoidal inclusion, and related problems,” Proc
Royal Soc A, 241(1226), pp. 376–396.

[6] Eshelby, J. D., 1959, “The Elastic Field Outside an Ellip-
soidal Inclusion,” Proc. Roy. Soc. London. Series A, Math.
& Phys. Sci., 252(1271), pp. 561–569.

[7] Prosser, B. L., Khairallah, R. J., Ziman, A. P., Ward, C. W.,
and Lederer, W. J., 2013, “X-ROS signaling in the heart
and skeletal muscle: Stretch-dependent local ROS regulates
[Ca2+]i,” Journal of Molecular and Cellular Cardiology, 58,
p. 172.

[8] Wineman, A. S. and Rajagopal, K. R., 2000, Mechanical Re-
sponse of Polymers, Cambridge University Press.

9 Copyright c© 2018 by ASME


	INTRODUCTION
	ESHELBY ANALYSIS
	Elastic Inclusion problem

	MATERIALS
	Linear Viscoelasticity
	Hydrogel Characterization
	Myocyte Characterization

	VISCOELASTIC ESHELBY ANALYSIS
	VE Eshelby Simulations
	Baseline Study
	Parametric Study

	CONCLUSIONS

