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This editorial refers to ‘Hierarchical statistical techniques

are necessary to draw reliable conclusions from analysis of

isolated cardiomyocyte studies’ by M.B. Sikkel et al., pp. 1743–

1752.

In the book entitled The Seven Pillars of Statistical Wisdom, Stephen
Stigler1 tells the story of William Stanley Jevons’s obsession with finding
matches between the periodicities of sunspot activity and business
cycles. Having found an apparent equality, Jevons constructs a model of
the causal relationship between these two cycles. His model was ridi-
culed by his contemporaries and did not stand the test of time. Jevons’s
problem was not the implausibility of his model for the relationship
between sunspot activity and business cycles. Rather, Jevons erred in
building a model based on the false premise that the two cycles had the
same period. Unless two periodic functions have exactly the same
period, they will eventually move further and further out of phase with
each other. However, on a short time scale, the cross-correlation
between two unrelated cycles of slightly different periods can be very
high and it is so tempting, as Jevons fell victim, to construct a causal
model. Now we might smugly smile at Jevons’s naiveté; the statistical
tools developed in the 150 years since Jevons’s time ought to save us
from Jevons’s fate. However, we should not forget the warning of
Ecclesiastes 1:9: What has been will be again, what has been done will be
done again; there is nothing new under the sun.

Sikkel et al.2 show us how we might inadvertently fall into the same
trap as Jevons—and importantly, how to spot and avoid the trap. The
Methods section of almost any article in Cardiovascular Research will have
a subsection on the statistical tests used and what P value is deemed the
threshold for significance (typically 0.05). These statistical tests, fre-
quently the Student’s t-test, or some kind of analysis of variance are sup-
posed to reduce the chances of wrongfully rejecting the null hypothesis
(usually the uninteresting hypothesis we hope to reject) and committing
a Type I error (Perhaps the most famous and important experiment
where the null hypothesis was not rejected was Michelson and Morley’s
measurement of the speed of light along directions parallel and perpen-
dicular to the propagation direction. Not rejecting the null hypothesis–
no difference in the speed of light along these directions—set the foun-
dation for Einstein’s relativity theory.) Most of us are aware that many
parametric tests (such as the t-test) assume that the underlying data are
normally distributed, and we make some test to check whether our data

conform to this assumption. Most statistical tests also assume that the
data are independent (apart from the treatment variable). But as Sikkel
et al.2 and others3,4 point out, many researchers ignore this critical
assumption, which can result in a falsely small P value.

When there is a correlation in the data, the data cannot be treated as
being independent statistical analysis. Consider a simple hypothetical
example where m = 10 measurements of blood glucose concentration
are taken from each of n = 3 rats (labelled red, blue, and green). The true
blood glucose distributions for each rat (based on the number of sam-
ples m taken from each rat approaches infinity) are shown in Figure 1,
and the black curve is the population distribution that is obtained as the
number of rats, n, sampled approaches infinity. If the number of samples
m from each rat increases, we obtain a better estimate of the mean glu-
cose concentration of each rat, but we get no better estimate of the
population mean because n remains equal to 3. In this example, it is clear
that we should not treat each measurement as independent and estimate
the population mean as the average of these 10� 3 = 30 measurements.
More mischief ensues if we treat the measurements as independent and

Figure 1 Hypothetical distribution of glucose concentrations in
three rats (red, green, and blue curves) and that of the population
(black curve).
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estimate the error of the mean as s=

ffiffiffiffiffiffiffiffiffi

30-1
p

, where s is the sample stand-
ard deviation (of 30 measurements). If we did the same procedure for a
set of three rats that had undergone some treatment and did a t-test to
compare the means between the two groups, we might find that the
P value is less than 0.05, and we would happily publish our finding that
the treatment had an effect. But this is patent nonsense. Taking more
and more measurements from each of the three rats (letting m!1)
would make the standard error of the mean appear to approach zero,
and P could be much less than 0.001, but, in fact, we are no closer to
knowing the true population mean value than before. We have commit-
ted a Type I error and most likely constructed some mechanistic explan-
ation, like Jevons, to explain the false premise.

Some of us might be guilty of treating each measurement as an inde-
pendent data point for understandable, but not justifiable, practical rea-
sons. For example, we might measure the L-type Ca2þ current in m cells
from n animals where m > 1 to give a total of m� n data points. Animals
can be very expensive so n can be quite small, and it is natural to get
many measurements (large m) from each animal. One approach—
usually not taken—is to average the m measurements for each animal
and use the n average values for the statistical tests. Because the standard
error of the mean scales as 1=

ffiffiffiffiffiffiffi

n-1
p

, the statistical test might not indicate
significance when n is small even when the treatment is actually effective.
In other words, the statistical test is too conservative, and we have com-
mitted a Type II error.

How do we navigate between fooling ourselves by committing a Type
I error and missing a real effect by committing a Type II error? Sikkel et al.
suggest using hierarchical statistical techniques that can detect clustering
of data (as in Figure 1) and calculate P based on the value of the intraclass

correlation coefficient (ICC). The ICC varies between zero for no clustering
(where there are really m� n independent data points) and one for data
that have identical values in each cluster (infinitely narrow distribution
for each rat in Figure 1), but different clusters have different values
(where now there are only n independent data points). Importantly,
Sikkel et al. provide an algorithm in the open source R language to calcu-
late ICC and P. With this algorithm, we can sleep better knowing that we
do not have to throw away all those hard-earned m� n data points and
at the same time not fooling ourselves with artificially small P values and
expending energy and time making mechanistic models of some phan-
tasm. We wish the readers a good night’s sleep.
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