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The heart is a smart pump, automatically adjusting 
its contractile strength in response to mechanical 
loads placed upon it, via intrinsic adaptations dis-

covered over a century ago.1,2 When the cardiomyocyte 
encounters an increase in preload (larger end-diastolic 
volume), the Frank-Starling effect enhances contrac-
tile force and stroke volume, mainly by instantaneous 
sarcomere-length and myofilament-based effects, inde-
pendent of Ca2+ transient changes. In contrast, when 
the heart pumps blood against an increase in afterload 
(larger resistance), the Anrep effect develops over min-
utes to increase Ca2+ transients and enhance contractil-
ity. Most prior studies have used stretching methods to 
control preload on cardiomyocytes; it has been difficult 
to independently control afterload, and the mechanisms 
underlying the Anrep effect remain unresolved.2 We have 
developed a new methodology to control afterload at the 
single-myocyte level using our Cell-in-Gel system,3,4 and 
studies how afterload affects the myocyte excitation-
Ca2+ signaling-contraction (E-C) coupling (Figure [A]).

We embedded freshly isolated rabbit ventricular myo-
cytes in a 3-dimensional viscoelastic hydrogel compris-
ing polyvinyl alcohol (PVA) and 4-boronate-polyethylene 
glycol crosslinker (Figure [B]).4 Since the myocytes are 
embedded at slack length without preload, the Cell-in-
Gel system is well suited for studying afterload effects. 
Mechanical analyses show that the myocyte contracting 
in-gel experiences 3-dimensional mechanical stresses 
including longitudinal tension due to cell shortening, 
transverse compression due to cell broadening, and 

surface traction with normal and shear stress (Figure 
[C]).3

We further developed a Patch-Clamp-in-Gel tech-
nique (Figure [D]a) using a gel-forming protocol. First, 
we establish patch-clamp of the cell under load-free 
condition with the myocyte bathed in a modified Tyrode 
solution containing PVA. Next, add 4-boronate-poly-
ethylene glycol to crosslink PVA, which embeds the 
cell-electrode assembly in-gel. Finally, repeat the elec-
trophysiology recordings on the same cell now contract-
ing under afterload in-gel. Figure [D]b shows the action 
potentials recorded first in load-free and then under 
afterload. Upon adding 10% 4-boronate-polyethylene 
glycol to 10% PVA, polymerization occurred in only 
minutes. As the hydrogel became stiffer, the increases 
of afterload during cell contraction caused progres-
sive increases in action potential duration (Figure [D]
c). After reaching steady state, afterload significantly 
prolonged APD95 (Figure [D]d), with unchanged action 
potential amplitude (Figure [D]e).

We studied afterload effects on Ca2+ signaling and 
cell contraction using a gel-dissolve protocol (Figure 
[E]). First, we measured cytosolic Ca2+ concentration 
([Ca2+]i) and sarcomere length shortening simultane-
ously while the myocyte was embedded in-gel and 
paced to perform E-C coupling under afterload. Next, 
sorbitol (1% w/v) was added to the perfusion solution 
to dissolve the hydrogel. Finally, we repeated experi-
ments on the same cell, now contracting in load-free 
condition. These self-control experiments show that 
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afterload did not alter diastolic [Ca2+]i (Figure [E]b) but 
increased systolic Ca2+ transients (Figure [E]c), reduced 
sarcomere shortening magnitude (Figure [E]c), and 
slowed relaxation (Figure [E]e). Thus, afterload-induced 
mechano-chemo-transduction regulates the Ca2+ sig-
naling system, causing mechano-chemo-transduction-
Ca2+ gain to enhance contractility.

The afterload effects on electrophysiology and Ca2+ 
signaling provide feedback loops in the dynamic system 
of E-C coupling, which may enable autoregulation. To 
test this hypothesis, we systematically tuned afterload 
levels using hydrogels of different stiffness (mixing 10% 
PVA with different crosslinker concentrations, CL%). 
Cardiomyocytes showed progressively larger Ca2+ tran-
sients under higher afterload in stiffer gels (Figure [F], 
CL 5%–10%, gel elastic shear modulus 1–10 kPa). 
Remarkably, the increases of Ca2+ transients enabled 
cardiomyocytes to maintain relatively stable contrac-
tion amplitude despite load increases (bottom). It was 
not until very high afterload (CL 11%–15%, gel elas-
tic shear modulus 11–15 Pa) that myocyte contraction 
declined with reduced mechano-chemo-transduction-
Ca2+ gain. In conclusion, our studies reveal mechano-
chemo-electro-transduction feedbacks in the dynamic 
system of cardiac excitation-Ca2+ signaling-contraction 
coupling, which enable autoregulation of contractility at 
the single-myocyte level independent of neurohormonal 
influences. The Cell-in-Gel methodology provides a 
powerful tool for further dissection of mechano-chemo-
electro-transduction molecular pathways that underlie 
the heart’s intrinsic adaptive responses to mechanical 
loading in health and diseases.
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Nonstandard Abbreviation and Acronyms

PVA polyvinyl alcohol
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Figure. Cell-in-Gel Technology for Controlling Mechanical Load on Cells.
A, Schematic of cardiomyocyte excitation-contraction coupling with mechano-transduction feedback. B, Cardiomyocytes were embedded in 
the polymer matrix made of polyvinyl alcohol (PVA) and 4B-PEG crosslinker. C, Mathematical modeling of the Cell-in-Gel system show that the 
single cardiomyocyte experiences 3-dimensional mechanical stresses during auxotonic contraction in the hydrogel.3 D, Patch-Clamp-in-Gel was 
performed by embedding the cell-electrode in the gel (Da). Action potentials (APs) were recorded first when the cell was contracting load-free 
(LF, black trace in Db), during the gel-forming protocol by adding 10% crosslinker to polymerize PVA (Dc), and after gel formation (Gel, red trace 
in Db). Bar charts compare cells under load-free vs in-gel, showing steady-state APD95 (Dd, P=1.9×10−10) and AP amplitude (De, P=0.45). E, 
Simultaneous measurements of [Ca2+]i and contraction using the gel-dissolve protocol (Ea). Bar charts compare the cells in load-free vs in-gel, 
showing diastolic [Ca2+]i (Eb, P=0.17), systolic peak [Ca2+]i (Ec, P=1.2×10−12), contraction amplitude (Ed, P=3.7×10−3), and relaxation time (Ee, 
P=2.12×10−4). F, Cells were embedded in the gels of different stiffness by mixing 10% PVA with crosslinker of indicated concentrations (CL%). 
Upper shows [Ca2+]i transient peak, and lower shows contraction amplitude. One-way ANOVA P<0.0001, and Tukey test for pair-wise comparison 
of neighboring groups. Statistical tests: the bars show mean and SEM of each group with indicated number of cells/animals. All groups passed 
D’Agostino-Pearson normality test. One-way ANOVA test was used for multiple groups comparison; t test for 2 groups comparison. ns indicates 
not significant. P: *P<0.05, **P<0.01, ***P<0.001.
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